Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thương Thương
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 12 2020 lúc 13:58

\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)

Đặt \(\sqrt{x^2-4x+5}=t>0\)

\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)

\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)

Duong Thi Minh
Xem chi tiết
Tony Tony Chopper
8 tháng 3 2017 lúc 23:13

1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)

thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau

2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)

đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau

ngonhuminh
10 tháng 3 2017 lúc 12:17

Nghiệm nguyên.

2x+3=(2x+1)+2

\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)

2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1

\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)

18 không chia hết co 4 vậy vô nghiệm nguyên.

Viết diễn dải dài suy luận logic rất nhanh

ngonhuminh
10 tháng 3 2017 lúc 12:32

câu 2.

\(2\left(x^2+2\right)>0\forall x\) thực tế  >=4  không cần vì mình cần so sánh với 0

\(\left(2\right)\Leftrightarrow25\left(x^3+1\right)=4\left(x^2+2\right)^2\)

Vậy đáp số là (16-25)/4=-9/4

Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 0:30

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

Demngayxaem
Xem chi tiết
Kurosaki Akatsu
13 tháng 8 2017 lúc 16:19

\(x\left(2x-3\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Ta thấy thừa số 3 có  \(x^2+10>0\)

Vì vậy thừa số 3 không thể bằng 0 

Vậy , tổng các nghiệm thõa mãn là \(\frac{3}{2}\)

Võ Tuấn
13 tháng 8 2017 lúc 16:26

Ta có:

x(2x-3)(\(x^2\)+10)=0

\(\Leftrightarrow\)\(\hept{\begin{cases}x=0\\2x-3=0\\^{x^2+10=0}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\2x=3\\x^2=-10\left(\text{vô lý}\right)\text{ }\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Vậy x=0;\(\frac{3}{2}\) là nghiệm của phương trình

Hoàng Như Ngọc
Xem chi tiết
Nguyễn Tuấn
7 tháng 4 2016 lúc 20:26

http://olm.vn/hoi-dap/question/67687.html

Thao Thanh
Xem chi tiết
Trần Thị Loan
7 tháng 4 2015 lúc 18:58

Đặt u = 2x2 + 50x + 8; v = 8x + 50 => x2 + 29x + 29 = (u + v)/2

phương trình trở thành: (u+v)2/ 4 = u.v

=> u2 + 2uv + v2 = 4.uv =>  u2 - 2uv + v2 = 0 => (u - v)2 = 0 <=> u = v

=>  2x2 + 50x + 8= 8x + 50  =>  2x2 +  42x -42 = 0 <=>  x2 + 21x - 21 = 0 pt luôn có 2 nghiệm vì tích a.c < 0

theo Vi - et => x1 + x2 = -21; x1.x2 = -21

ta có:  x12 + x22 = (x1 + x2)2 - 2x1 x = (-21)2 - 42 = 399

Pham Hoàng Lâm
Xem chi tiết
Bui Le Duc Tien
6 tháng 4 2016 lúc 17:04

483 dùng hệ thức vi et pt bậc 4 là ra nhé bạn !@@

Vân Khánh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:59

a)     Phương trình: \({x^2} - 3x + 2 = 0\,\,\,\left( 1 \right)\)

Ta có: \(\Delta  = 9 - 4.2 = 1 > 0\)

Phương trình (1) có hai nghiệm \(\left\{ \begin{array}{l}{x_1} = \frac{{3 + 1}}{{2.1}} = 2\\{x_1} = \frac{{3 - 1}}{{2.1}} = 1\end{array} \right.\) => \({S_1} = \left\{ {1;2} \right\}\)

Phương trình: \(\left( {x - 1} \right)\left( {x - 2} \right) = 0\,\,\,\left( 2 \right)\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\) => \({S_2} = \left\{ {1;2} \right\}\)

b)     Hai tập \({S_1};{S_2}\) có bằng nhau

Thái Hưng Mai Thanh
Xem chi tiết
Trên con đường thành côn...
10 tháng 11 2023 lúc 20:36

\(ĐKXĐ:x>2\)

BPT đã cho tương đương với:

\(2log_2\sqrt{x+1}+log_2\left(x-2\right)\le2\)

\(\Leftrightarrow log_2\left(x+1\right)+log_2\left(x-2\right)\le2\)

\(\Leftrightarrow log_2\left(x^2-x-2\right)\le2\)\(\Leftrightarrow0< x^2-x-2\le2^2\)\(\Leftrightarrow\left[{}\begin{matrix}2< x\le3\\-2\le x< -1\left(l\right)\end{matrix}\right.\)

Vậy tổng các nghiệm nguyên của bpt là 3