Cho tam giác ABC không phải là tam giác vuông.
Chứng minh: tanA+tanB+tanC=tanA.tanB.tanC
Cho tam giác ABC không phải là tam giác vuông.
Chứng minh: tanA+tanB+tanC=tanA.tanB.tanC
Cho tam giác ABC không phải là tam giác vuông.
Chứng minh: tanA+tanB+tanC=tanA.tanB.tanC
Ta có \(A+B+C=\pi\)
\(\Rightarrow A+B=\pi-C\)
\(\Rightarrow tan\left(A+B\right)=tan\left(\pi-C\right)\)
\(\Rightarrow\dfrac{tanA+tanB}{1-tanA.tanB}=-tanC\)
\(\Rightarrow tanA+tanB=-tanC\left(1-tanA.tanB\right)\)
\(\Rightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)
\(\Rightarrow tanA+tanB+tanC=tanA.tanB.tanC\) ( đpcm )
.Giúp mình với. Cmr trong tam giác ABC ta có:
a, sinA + sinB +sinC = 4cosA/2.cosB/2.cosC/2
b, tanA +tanB + tanC= tanA.tanB.tanC
a)\(VT=sinA+sinB+sinC=2sin\frac{A+B}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)(đpcm)
b)Ta có:\(A+B+C=180^O\)
\(\Rightarrow tan\left(A+B\right)=tan\left(-C\right)=-tanC\)
\(\Leftrightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\left(đpcm\right)\)
Cho\(\Delta\)ABC nhọn .Chứng minh rằng: tanA+tanB+tanC=tanA.tanB.tanC
Chứng minh \(tanA+tanB+tanC=tanA.tanB.tanC\)
\(VT=tanA+tanB+tanC=\dfrac{sinA}{cosA}+\dfrac{sinB}{cosB}+\dfrac{sinC}{cosC}\\ =\dfrac{sinA.sinB+cosA.cosB}{cosA+cosB}+\dfrac{sinC}{cosC}\\ =\dfrac{sin\left(A+B\right)}{cosA.cosB}+\dfrac{sinC}{cosC}\)
Theo định lý tổng 3 góc trong tam giác :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow A+B=180^o-C\\ \Leftrightarrow sin\left(A+B\right)=sin\left(180^o-C\right)=sinC\\ =\dfrac{sinC}{cosAcosB}+\dfrac{sinC}{cosC}\\ =\dfrac{sinC}{cosAcosBcosC}\left(cosC+cosAcosB\right)\\ =\dfrac{sinC}{cosAcosBcosC}\left(-cos\left(A+B\right)+cosAcosB\right)\\ =\dfrac{sinC}{cosAcosBcosC}\left(-cosAcosB+sinAsinB+cosAcosB\right)\\ =\dfrac{sinAsinBsinC}{cosAcosBcosC}\\ =\dfrac{sinA}{cosA}.\dfrac{sinB}{cosB}.\dfrac{sinC}{cosC}=tanA.tanB.tanC=VP\left(đpcm\right)\)
Chứng minh rằng trong tam giác ABC, ta có:
a. tanA + tanB + tanC = tanAtanBtanC
b. sin2A + sin2B + sin2C = 4sinAsinBsinC
Vì A, B, C là ba góc của tam giác nên ta có : A + B + C = π.
⇒ C = π - (A + B); A + B = π - C
a) Ta có: tan A + tan B + tan C = (tan A + tan B) + tan C
= tan (A + B). (1 – tan A.tan B) + tan C
= tan (π – C).(1 – tan A. tan B) + tan C
= -tan C.(1 – tan A. tan B) + tan C
= -tan C + tan A. tan B. tan C + tan C
= tan A. tan B. tan C
b) sin 2A + sin 2B + sin 2C
= 2. sin (A + B). cos (A – B) + 2.sin C. cos C
= 2. sin (π – C). cos (A – B) + 2.sin C. cos (π – (A + B))
= 2.sin C. cos (A – B) - 2.sin C. cos (A + B)
= 2.sin C.[cos (A – B) - cos (A + B)]
= 2.sin C.[-2sinA. sin(- B)]
= 2.sin C. 2.sin A. sin B ( vì sin(- B)= - sinB )
= 4. sin A. sin B. sin C
Cho tam giác ABC nhọn. H là giao điểm của 3 đường cao AD, BE, CF.
a/ Cmr: tam giác AEF~tam giác ABC và SAEF=SBCEF trong trường hợp A=45 độ.
b/ Cmr: \(EF=AH.sinA\)
C/ \(\dfrac{S_{HBC}}{tanA}=\dfrac{S_{HAC}}{tanB}=\dfrac{S_{HAB}}{tanC}\)
a) Xét \(\Delta BAE\) và \(\Delta CAF\) có:
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{CFA}=90^0\)
nên \(\Delta BAE\sim\Delta CAF\left(g.g\right)\) \(\Rightarrow\dfrac{BA}{CA}=\dfrac{AE}{AF}\)\(\Leftrightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\)
Xét \(\Delta ABC\) và \(\Delta AEF\) có:
Góc A chung
\(\dfrac{AB}{AE}=\dfrac{AC}{AF}\)
nên \(\Delta ABC\sim\Delta AEF\left(c.g.c\right)\) \(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=\dfrac{1}{2}\)
\(\Rightarrow2S_{AEF}=S_{ABC}=S_{AEF}+S_{BFEC}\) \(\Leftrightarrow S_{AEF}=S_{BFEC}\) (dpcm)
b) Có \(\widehat{AFE}=\widehat{ACB}\) (do \(\Delta ABC\sim\Delta AEF\))
\(\Leftrightarrow90^0-\widehat{AFE}=90^0-\widehat{ACB}\)
\(\Leftrightarrow\widehat{EFC}=\widehat{DAC}\) mà \(\widehat{C}\) chung \(\Rightarrow\Delta EFC\sim\Delta HAC\left(g.g\right)\)
\(\Rightarrow\dfrac{EF}{HA}=\dfrac{FC}{AC}\)\(\Leftrightarrow\dfrac{EF}{HA}=sinA\)\(\Leftrightarrow EF=HA.sinA\)
c)CM được:\(\Delta DHC\sim\Delta FBC\left(g.g\right)\)\(\Rightarrow\dfrac{HD}{BF}=\dfrac{CH}{BC}\Leftrightarrow\dfrac{HD.BC}{BF}=CH\)
\(\Delta HEC\sim\Delta AFC\left(g.g\right)\)\(\Rightarrow\dfrac{HE}{AF}=\dfrac{HC}{AC}\) \(\Leftrightarrow\dfrac{HE.AC}{AF}=HC\)
Xét \(S_{BHC}.tanB-S_{HAC}.tanA\)\(=\dfrac{1}{2}.HD.BC.\dfrac{FC}{BF}-\dfrac{1}{2}.HE.AC.\dfrac{FC}{AF}\)
\(=\dfrac{1}{2}.CH.FC-\dfrac{1}{2}.HC.FC=0\) \(\Leftrightarrow S_{BHC}.tanB-S_{HAC}.tanA=0\)
\(\Leftrightarrow\dfrac{S_{BHC}}{tanA}=\dfrac{S_{HAC}}{tanB}\) , CM tương tự \(\Rightarrow\dfrac{S_{HAC}}{tanB}=\dfrac{S_{HAB}}{tanC}\)
=>dpcm
Cho tam giác ABC có 3 góc nhọn, vẽ đường cao BE và AD. Gọi H là trực tâm và G là trọng tâm tam giác ABC.
a) CM nếu HG song song BC thì tanB.tanC=3
b) CM: tanA.tanB.tanC=tanA+tanB+tanC
cho tam giác ABC có 3 góc nhọn, vẽ đường cao BE và AD. Gọi H là trực tâm và G là trọng tâm tam giác ABC.
a) CM nếu HG song song BC thì tanB.tanC=3
b) CM: tanA.tanB.tanC=tanA+tanB+tanC