Cho tam giác ABC không phải là tam giác vuông.
Chứng minh: tanA+tanB+tanC=tanA.tanB.tanC
Cho tam giác ABC có ba góc nhọn Vẽ đường cao AD và BE. Gọi H là trực tâm và G là trọng tâm của tam giác ABC. C/m:
a) tanB*tanC= AD/HD
b) HG song song với BC C/m: tanB*tanC=3
Cho tam giác ABC nhọn,đường cao AD, trung tuyến AM.Gọi H,G lân lượt là trọng tâm, trực tâm. Chứng minh: a) tam giác BHD đồng dạng Tam giác ACD
b)HG//BC <=> tanB. tanC =3
Cho tam giác ABC vuông tại A, đường cao AH chia BC thành hai đoạn, BH=5cm, CH=20cm. Chứng minh tanB=4 tanC
Cho tam giác ABC , có H là giao điểm 3 đường cao AD, BE, CF. Chứng minh rằng SABC = 3. SBHC <=> tanB + tanC =2tanA
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H. Biết AH=k.HD . Chứng minh rằng: tanB. tanC=k+1
Cho tam giác ABC có đường trung tuyến AM bằng cạnh AC. Tìm sự liên kết giữa tanB và tanC?