log(x-9)+2log√2x-1<=2
help me
\(log_2\sqrt{2x^2-2x-3}+log^{x-1}_{\dfrac{1}{2}}=0\)
\(log^{x+4}_2+2log^{x+2}_4=2log^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
\(log^{4^x+1}_2=log^{2^{2x+3}-6}_2+x\)
Cho dãy số ( u n ) thỏa mãn log u 1 + 2 + log u 1 - 2 log u 10 = 2 log u 10
và u n + 1 = 2 u n với mọi n ≥ 1 Giá trị nhỏ nhất của n đề u n > 5 100 bằng
A. 247
B. 248
C. 229
D. 290
Cho dãy số (un) thỏa mãn log u 1 + 2 + log u 1 - 2 log u 10 = 2 log u 10 và un+1 = 2un với mọi n ≥ 1 . Giá trị nhỏ nhất của n để un > 5100 bằng
A. 247.
B. 248.
C. 229.
D. 290.
Đáp án B.
Đặt t = 2 + log u 1 - 2 log u 10 ≥ 0
⇔ 2 log u 1 - 2 log u 10 = t 2 - 2 ,
khi đó giả thiết trở thành:
log u 1 - 2 log u 10 + 2 + log u 1 - 2 log u 10 = 0
⇔ t 2 + t - 2 = 0
<=> t = 1 hoặc t = -2
⇒ log u 1 - 2 log u 10 = - 1
⇔ log u 1 + 1 = 2 log u 10
⇔ log 10 u 1 = log u 10 2 ⇔ 10 u 1 = u 10 2 ( 1 )
Mà un+1 = 2un => un là cấp số nhân với công bội q = 2
=> u10 = 29 u1 (2)
Từ (1), (2) suy ra
10 u 1 = 9 9 u 1 2 ⇔ 2 18 u 1 2 = 10 u 1 ⇔ u 1 = 10 2 18
⇒ u n = 2 n - 1 . 10 2 18 = 2 n . 10 2 19 .
Do đó u n > 5 100 ⇔ 2 n . 10 2 19 > 5 100
⇔ n > log 2 5 100 . 2 19 10 = - log 2 10 + 100 log 2 5 + 19 ≈ 247 , 87
Vậy giá trị n nhỏ nhất thỏa mãn là n = 248.
help me
log \(^{x+4}_2\)+ 2log\(^{x+2}_4\)= 2log\(^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
Lời giải:
Ta có:
\(\log_2(x+4)+2\log_4(x+2)=2\log_{\frac{1}{2}}\frac{1}{8}=6\)
\(\Leftrightarrow 2\log_4(x+4)+2\log_4(x+2)=6\)
\(\Leftrightarrow \log_4(x+4)+\log_4(x+2)=3\)
\(\Leftrightarrow \log_4[(x+2)(x+4)]=3\)
\(\Leftrightarrow (x+2)(x+4)=4^3=64\)
\(\Leftrightarrow x^2+6x-56=0\)
\(\Leftrightarrow x=-3\pm \sqrt{65}\)
Kết hợp với ĐKXĐ ta suy ra \(x=-3+\sqrt{65}\) là nghiệm của pt
1/2log(x^2+x-5)=log(5x)+log1/5x ai biết hướng dẫn giúp e với ạ
\(\dfrac{1}{2}\)log(x2 + x - 5)=log(5x)+log(\(\dfrac{1}{5x}\))
⇔\(\sqrt{x^2+x-5}\) = 5x.\(\dfrac{1}{5x}\)
⇔x2 + x - 5=1 ⇔ \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Kết hợp với ĐKXĐ của hàm nên chỉ có x=2 thoả mãn yêu cầu bài tập
2log3(x-2) + log3(x-4)2 =0
potrzebuje pomocy tylko z początkiem, potem już sobie poradzę.
Log362 - 1/2log1/63
\(\log_{6^2}2-\frac{1}{2}\log_{\frac{1}{6}}3=\frac{1}{2}\log_62+\frac{1}{2}\log_63=\frac{1}{2}\log_6\left(2.3\right)=\frac{1}{2}\log_66=\frac{1}{2}\)
Tại sao log622 - 1/2log1/63 lại <=> 1/2log62 + 1/2 log63 ạ?
đấy là công thứ tính nhé
\(\log_{a^{\alpha}}b=\frac{1}{\alpha}\log_ab\)
Tìm các nghiêm của các phương trình log3(10-x)+1/2logcăn3(x+2)=2 là.
Lời giải:
ĐK: \(-2< x< 10\)
\(\log_3(10-x)+\frac{1}{2}\log_{\sqrt{3}}(x+2)=2\)
\(\Leftrightarrow \log_3(10-x)+\log_3(x+2)=2\)
\(\Leftrightarrow \log_3[(10-x)(x+2)]=2\)
\(\Leftrightarrow (10-x)(x+2)=9\)
\(\Leftrightarrow -x^2+8x+11=0\)
\(\Leftrightarrow x=4\pm 3\sqrt{3}\) (đều thỏa mãn đkxđ)
Vậy pt có nghiệm \(x=4\pm 3\sqrt{3}\)
Đề bài
Giải mỗi phương trình sau:
a) \({3^{{x^2} - 4x + 5}} = 9\)
b) \(0,{5^{2x - 4}} = 4\)
c) \({\log _3}(2x - 1) = 3\)
d) \(\log x + \log (x - 3) = 1\)
a) \({3^{{x^2} - 4x + 5}} = 9 \Leftrightarrow {x^2} - 4x + 5 = 2 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow \left( {x - 3} \right)\left( {x - 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\)
Vậy phương trình có nghiệm là \(x \in \left\{ {1;3} \right\}\)
b) \(0,{5^{2x - 4}} = 4 \Leftrightarrow 2x - 4 = {\log _{0,5}}4 \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\)
Vậy phương trình có nghiệm là x = 1
c) \({\log _3}(2x - 1) = 3\) ĐK: \(2x - 1 > 0 \Leftrightarrow x > \frac{1}{2}\)
\( \Leftrightarrow 2x - 1 = 27 \Leftrightarrow x = 14\) (TMĐK)
Vậy phương trình có nghiệm là x = 14
d) \(\log x + \log (x - 3) = 1\) ĐK: \(x - 3 > 0 \Leftrightarrow x > 3\)
\(\begin{array}{l} \Leftrightarrow \log \left( {x.\left( {x - 3} \right)} \right) = 1\\ \Leftrightarrow {x^2} - 3x = 10\\ \Leftrightarrow {x^2} - 3x - 10 = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 2 (loại) \,\,\,\\x = 5 (TMĐK) \,\,\,\,\,\,\,\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm x = 5