chứng minh bất đẳng thức \(a^2+b^2\ge2ab\)
tìm GTLN của biểu thức
a) a= 4x-x2+3
b)B= 4-x2+2x
bài 8: chứng minh bất đẳng thức
a) a2+b2\(\ge2ab\forall a,b\in R\)
b)a2+b2\(\ge-2ab\forall a,b\in R\)
\(a,A=4x-x^2+3\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy......
\(b,B=4-x^2+2x\)
\(=-\left(x^2-2x+1\right)+5\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy......
B2:
a) ta có: \(a^2+b^2-2ab\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)
\(\Rightarrowđpcm\)
b) Ta có: \(a^2+b^2\ge-2ab\)
\(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)
\(\Rightarrowđpcm\)
tìm GTLN của biểu thức
a) a= 4x-x2+3
b)B= 4-x2+2x
bài 8: chứng minh bất đẳng thức
a) a2+b2\(\ge2ab\forall a,b\in R\)
b)a2+b2\(\ge-2ab\forall a,b\in R\)
Em thử nhé !
Bài 1 :
a) \(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2\right)+7\)
\(=-\left(x-2\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy : \(A_{max}=7\Leftrightarrow x=2\)
b) \(B=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2.x.1+1^2\right)+5\)
\(\Leftrightarrow B=-\left(x-1\right)^2+5\le5\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy : \(B_{max}=5\Leftrightarrow x=1\)
Giup mk voi tick cho
Cm bất đẳng thức sau
1) \(\frac{1}{3}\le\frac{a^2-2a+4}{a^2+2a+4}\le3\)
2) \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\ge2ab\)
chứng minh bất đẳng thức a*a+b*b+2>2(a+b)
bạn chép đề bài nhầm ak phải thế này chứ:a2+b2 +2≥2(a+b)
trả lời :
BĐT ⇔a2-2a+1+b2-2b+1≥0
⇔(a-1)2+(b-1)2≥0 điều này đúng với mọi a;b
Dấu "=" xảy ra ⇔a=b=1
Vậy BĐT đã được chứng minh
chứng minh bất đẳng thức :
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)
\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\) ( dấu "=" xảy ra ⇔ a=b )
Chứng minh bất đẳng thức a^2+b^2+1 >= ab+a+b
Ta có :
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow a^2+b^2+1-ab-a-b\ge0\)
\(\Leftrightarrow2a^2+2b^2-2ab-2a-2b+2\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( đúng)
chứng minh bất đẳng thức a^2+b^2=<1+ab
Chứng minh bất đẳng thức: a2+b2+2 > 2(a+b)
a^2+b^2+2>2(a+b)
<=> a^2+b^2+2> 2a + 2b>0
<=> (a^2 + 2a+1)+2> (b^2+2b+1)
chứng minh bất đẳng thức sau:
a^2+b^2+c^2>=a(b+c)