Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
anhmiing
Xem chi tiết
Nguyễn Văn Tuấn Anh
31 tháng 7 2019 lúc 12:06

\(a,A=4x-x^2+3\)

       \(=-\left(x^2-4x+4\right)+7\)

       \(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\) 

Vậy......

\(b,B=4-x^2+2x\)

      \(=-\left(x^2-2x+1\right)+5\)

      \(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy......

Nguyễn Văn Tuấn Anh
31 tháng 7 2019 lúc 12:24

B2:

a) ta có: \(a^2+b^2-2ab\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)

\(\Rightarrowđpcm\)

b) Ta có: \(a^2+b^2\ge-2ab\)

     \(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)

   \(\Rightarrowđpcm\)

ytr
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
31 tháng 7 2019 lúc 11:56

Em thử nhé !

Bài 1 :

a) \(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2\right)+7\)

\(=-\left(x-2\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy : \(A_{max}=7\Leftrightarrow x=2\)

b) \(B=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2.x.1+1^2\right)+5\)

\(\Leftrightarrow B=-\left(x-1\right)^2+5\le5\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy : \(B_{max}=5\Leftrightarrow x=1\)

Lê Nhật Tân
Xem chi tiết
hosymui
Xem chi tiết
Sengoku
5 tháng 5 2019 lúc 20:01

bạn chép đề bài nhầm ak phải thế này chứ:a2+b2 +2≥2(a+b)

trả lời :

BĐT ⇔a2-2a+1+b2-2b+1≥0

⇔(a-1)2+(b-1)2≥0 điều này đúng với mọi a;b

Dấu "=" xảy ra ⇔a=b=1

Vậy BĐT đã được chứng minh

GV
Xem chi tiết
Nguyễn thành Đạt
18 tháng 2 2023 lúc 20:46

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)

\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\) ( dấu "=" xảy ra ⇔ a=b )

Trần Huy Vlogs
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
18 tháng 3 2018 lúc 7:28

Ta có :

\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow a^2+b^2+1-ab-a-b\ge0\)

\(\Leftrightarrow2a^2+2b^2-2ab-2a-2b+2\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( đúng)

Anh Mai
Xem chi tiết
Ngô Gia Huy
Xem chi tiết
Cá Trê Siêu Hạng
12 tháng 4 2016 lúc 11:23

a^2+b^2+2>2(a+b)

<=> a^2+b^2+2> 2a + 2b>0

<=> (a^2 + 2a+1)+2> (b^2+2b+1)

Nguyen Thi Ngan Ha
Xem chi tiết