CMR: Biểu thức sau ko phụ thuộc vào biến :x(x-2y)-(x-y)^2+y^2+3
Chứng tỏ các đa thức sau
Ko phụ thuộc vào biến x, y
a)(x-1)(x^2+y) -(x^2-y) (x-2)-x(x+2y)+3(y-5)
b) 6(x^3y+x-3)-6x(2xy^3+1)-3x^2y(2x-4y^2)
Ko phụ thuộc vào biến y
(x^2+2xy+4y^2)(x-2y)-6(1/2-4/3y^3)
\(\text{a) }\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)
\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)
\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)
\(=\left(x^3+x^3\right)+\left(-x^2+2x^2-x^2\right)+\left(xy+xy-2xy\right)+\left(-y-2y+3y\right)-15\)
\(=0+0+0+0-15\)
\(=-15\)
\(\text{b) }6\left(x^3y+x-3\right)-6x\left(2xy^3+1\right)-3x^2y\left(2x-4y^2\right)\)
\(=\left(6x^3y+6x-18\right)-\left(12x^2y^3+6x\right)-\left(6x^3y-12x^2y^3\right)\)
\(=6x^3y+6x-18-12x^2y^3-6x-6x^3y+12x^2y^3\)
\(=\left(6x^3y-6x^3y\right)+\left(6x-6x\right)+\left(-12x^2y^3+12x^2y^3\right)-18\)
\(=0+0+0-18\)
\(=-18\)
\(\text{c) }\left(x^2+2xy+4y^2\right)\left(x-2y\right)-6\left(\frac{1}{2}-\frac{4}{3}y^3\right)\)
\(=\left(x^3-2x^2y+2x^2y-4xy^2+4xy^2-8y^3\right)-\left(3-8y^3\right)\)
\(=\left(x^3-8y^3\right)-\left(3-8y^3\right)\)
\(=x^3-8y^3-3+8y^3\)
\(=x^3-3\)
CMR giá trị biểu thức sau không phụ thuộc vào biến
a, 5.(x+4)^2 +4.(x-5)^2 -9.(4+x).(x-4)
b,(x+2y)^2 + (2x-y)^2-5(x+y)(x-y)-10(y+3)(y-3)
\(a,5\left(x+4\right)^2+4\left(x-5\right)^2-9\left(4+x\right)\left(x-4\right)\)
\(=5\left(x^2+8x+16\right)+4\left(x^2-10x+25\right)-9\left(x^2-16\right)\)
\(=5x^2+40x+80+4x^2-40x+100-9x^2+144\)
\(=324\)
Dài wa nên mk giúp 1 phần thôi,cn lại bn lm tg tự =.= hok tốt!!!
chứng minh biểu thức sau không phụ thuộc vào biến x,y
3xy(4x-2y)-(x-2y)^3-2(4y^3-1)
`3xy(4x-2y)-(x-2y)^3-2(4y^3-1)`
`=12x^2y-6xy^2-(x^3-6x^2y+12xy^2-8y^3)-8y^3+2`
`=12x^2y-6xy^2-x^3+6x^2y-12xy^2+8y^3-8y^3+2`
`=-x^3+18x^2y-18xy^2+2` (??????)
CMR: các biểu thức sau ko phụ thuộc vào biến x
z(y-x)+y(z-x)+x(y+z)
z(y-x)+y(z-x)+x(y+z)=\(zy-zx+yz-yx+xy+xz\)
=2yz
Vậy biểu thức: z.(y-x)+y(z-x)+x(y+z) không phụ thuộc vào biến x
=>đpcm
CMR giá trị của biểu thức sau không phụ thuộc vào giá trị của biến:
a) (3x-1).(2x+7)-(x+1).(6x-5)-(18x-12)
b) (x-y).(x^3+x^2y+xy^2+y^3)-x^4+y^4
a, gọi là A đi. \(A=6x^2+19x-7-6x^2-x-5-18x+12=5\)=> giá trị của A không phụ thuộc vào biến
b) \(B=x^4+x^3y+x^2y^2+xy^3-yx^3-x^2y^2-xy^3-y^4-x^4+y^4=0\)=> không phụ thuộc vào biến
câu b thì vế đầu nó là một hằng đẳng thức luôn rồi. là x^4-y^4. nhưng là hằng đẳng thức mở rộng nên chị mới làm tách hẳn ra. nếu em biết thì có thể làm nhanh hơn
: Chứng minh rằng các biểu thức sau có giá trị không phụ thuộc vào giá trị của biến.
A = (x – 2y)(x + 2y) + (2y – x)2 + 2023 + 4xy
B = ( 2x - 3 )(x - y) - (x - y)2 + (y - x)(x + y)
\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)
\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)
\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)
\(A=2x^2+2023\)
Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y
\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)
\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)
\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)
\(B=-3x+3y\)
Vậy giá trị của biểu thức vẫn phụ thuộc vào biến
A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)
A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)
A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))
A = 2\(x^2\) - 0 + 2023 - 0
A = 2\(x^2\) + 2023
Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.
B = (2\(x\) - 3)(\(x\) - y) - (\(x-y\))2 + (y - \(x\))(\(x\) + y)
B = 2\(x^2\) - 2\(xy\) - 3\(x\) + 3y - \(x^2\) + 2\(xy\) - y2 + y2 - \(x^2\)
B = (2\(x^2\) - \(x^2\) - \(x^2\)) - (2\(xy\) - 2\(xy\)) - 3\(x\) + 3y
B = (2\(x^2\) - 2\(x^2\)) - 0 - 3\(x\) + 3y
B = - 3\(x\) + 3y
Việc chứng minh giá trị biểu thức B không phụ thuộc vào biến là điều không thể
Cho x^2-y=a
y^2-z=b
z^2-x=c
CMR: Giá trị biểu thức sau ko phụ thuộc vào biến
P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2...
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2...
= (y^2-z)(-x^3+xy-yz^2+x^2z^2)
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)]
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến
Chứng minh biểu thức sau ko phụ thuộc vào biểu với tập xác định của nó
A=(\(\dfrac{x+y}{2x-2y}\) - \(\dfrac{x-y}{2x+xy}\) - \(\dfrac{2y^2}{y^2-x^2}\)) : \(\dfrac{2y}{x-y}\)
Sửa đề: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)
Ta có: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)
\(=\left(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)
\(=\left(\dfrac{\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}-\dfrac{\left(x-y\right)^2}{2\left(x+y\right)\left(x-y\right)}+\dfrac{4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)
\(=\left(\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)
\(=\dfrac{4y^2+4xy}{2\left(x-y\right)\left(x+y\right)}:\dfrac{2y}{x-y}\)
\(=\dfrac{4y\left(y+x\right)}{2\left(x-y\right)\left(y+x\right)}\cdot\dfrac{x-y}{2y}\)
\(=1\)
chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến y : (x-2y)(x^2 +2xy+4y^2) +8y^3
Ta có :
(x - 2y)(x2 + 2xy + 4y2) + 8y3
= x3 - 8y3 + 8y3
= x3
\(\Rightarrow\) đpcm