Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Giúp mik với mấy bn ơi C...

Chứng minh biểu thức sau ko phụ thuộc vào biểu với tập xác định của nó 

A=(\(\dfrac{x+y}{2x-2y}\) - \(\dfrac{x-y}{2x+xy}\) - \(\dfrac{2y^2}{y^2-x^2}\)) : \(\dfrac{2y}{x-y}\)

Nguyễn Lê Phước Thịnh
20 tháng 12 2020 lúc 13:07

Sửa đề: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)

Ta có: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)

\(=\left(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)

\(=\left(\dfrac{\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}-\dfrac{\left(x-y\right)^2}{2\left(x+y\right)\left(x-y\right)}+\dfrac{4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)

\(=\left(\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)

\(=\dfrac{4y^2+4xy}{2\left(x-y\right)\left(x+y\right)}:\dfrac{2y}{x-y}\)

\(=\dfrac{4y\left(y+x\right)}{2\left(x-y\right)\left(y+x\right)}\cdot\dfrac{x-y}{2y}\)

\(=1\)


Các câu hỏi tương tự
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Juvia Lockser
Xem chi tiết
Hải Ngân
Xem chi tiết
Phạm Đức Minh
Xem chi tiết
︎ ︎︎ ︎=︎︎ ︎︎ ︎
Xem chi tiết
Nguyễn Thanh Hải
Xem chi tiết
nguyễn thái hồng duyên
Xem chi tiết