Tìm x :
a) \(\left(4x^3+2x^2+199x\right):x=2005\)
b) \(2\left(x-1\right)^2+3\left(x-2\right)^2=5\left(x+2\right)\left(x+1\right)+4\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
Tìm x, biết :
a/ \(\dfrac{1}{3}x\left(x^2-4\right)=0\)
b/ \(x\left(x+5\right)=x+5\)
c/ \(x^3-\dfrac{1}{9}x=0\)
3)\(^2-\left(x+5\right)^2=0\)
e/ \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
f/ \(x\left(2x-3\right)-6+4x=0\)
g/ \(2\left(3x-2\right)^2-9x^2+4=0\)
h/ \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
i/ \(4x^2+9x+5=0\)
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
tìm GTLN
a)\(A=x^2+5y^2+2xy-4x-8y+2015\)
b)\(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
c)\(C=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
d)\(D=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
Bạn xem lại đề nhé.
a) \(A=x^2+5y^2+2xy-4x-8y+2015\)
\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2-y\right)^2+4y^2+2011\)
Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)
\(\Rightarrow A_{min}=2011\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
b) \(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
\(B=x^2-4024x+2012^2+x^2+4026x+2013^2\)
\(B=2x^2+2x+2012^2+2013^2\)
\(B=2\left(x^2+x+\dfrac{1}{4}\right)+2012^2+2013^2-\dfrac{1}{2}\)
\(B=2\left(x+\dfrac{1}{2}\right)^2+2012^2+2013^2-\dfrac{1}{2}\)
\(\Rightarrow B_{min}=2012^2+2013^2-\dfrac{1}{2}\)
Dấu bằng xảy ra : \(\Leftrightarrow x=-\dfrac{1}{2}\)
Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
a) (x-2)3+6(x+1)2-x3+12=0
⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0
⇒ 24x+10=0
⇒ 24x=-10
⇒ x=-5/12
a.
PT \(\Leftrightarrow x^3-6x^2+12x-8+6(x^2+2x+1)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow 24x+10=0\Leftrightarrow x=\frac{-5}{12}\)
b. Bạn xem lại đề, nghiệm khá xấu không phù hợp với mức độ tổng thể của bài.
c.
PT $\Leftrightarrow (4x^2+12x+9)+(x^2-1)=5(x^2+4x+4)+(x^2-4x-5)+9(x^2+6x+9)$
$\Leftrightarrow 10x^2+42x+64=0$
$\Leftrightarrow x^2+(3x+7)^2=-15< 0$ (vô lý)
Do đó pt vô nghiệm.
d.
PT $\Leftrightarrow (1-6x+9x^2)-(9x^2-17x-2)=(9x^2-16)-9(x^2+6x+9)$
$\Leftrightarrow 11x+3=-54x-97$
$\Leftrightarrow 65x=-100$
$\Leftrightarrow x=\frac{-20}{13}$
Câu 1: Rút gọn các biểu thức sau:
1. \(\left(x+y-z\right)^2+\left(y-z\right)^2+2z\left(z-y\right)\)
2. \(\left(3x+4\right)^2+\left(x-4\right)^2+2\left(3x+4\right)\left(x-4\right)\)
3.\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
4. \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)\)
5. \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Câu 2: Tìm x
1. \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=1\)
2. \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
3. \(\left(x+3\right)^2+\left(x-2\right)^2=2x^2\)
4. \(4x^2-9-x\left(2x-3\right)=0\)
5. \(4x^2-12x+9=0\)
Câu 3: Tìm GTNN
D = \(\left(2x-1\right)^2+\left(x+2\right)^2\)
Câu 4: Cho \(a^2+b^2+c^2=ab+bc+ac\) . Chứng minh rằng a=b=c
Tìm x biết :(đề không sai )
1.\(-4x\left(x-7\right)+4x\left(x^2-5\right)\) \(=28x^2-13\)
2.\(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)\) \(=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
3.\(\left(-4x^2-3\right)\left(2x+5\right)\) \(-\left(8x-3\right)\left(-x^2+2\right)\) \(-5x\left(x-6\right)-3x^2-4\)
4.\(\left(x-7\right)\left(x+5\right)-\left(x-3\right)\left(x-2\right)\) \(=15x^2\left(x+1\right)-\left(3x^2-1\right)\) \(\left(5x^2-2\right)-21x^2\)
5.\(\left(x-3\right)\left(-x+10\right)+\left(x-8\right)\left(x+3\right)\)\(=\left(5x^2-1\right)\left(x+3\right)-5x^3-15x^2\)
6.\(\left(-2x^2+5\right)\left(-x+3\right)-x^2\left(2x-6\right)\) \(=\left(x-1\right)\left(x+1\right)-\left(x-2\right)\left(x+4\right)\)
1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)
\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )
2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)
\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)
\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )
Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))
1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
=> \(-4x^2+28x+4x^3-20x=28x^2-13\)
=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)
=> \(-4x^2+4x^3+8x-28x^2+13=0\)
=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)
=> \(-32x^2+4x^3+8x+13=0\)
=> vô nghiệm
2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)
=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)
=> \(-14x^2-56x+12=0\)
=> .... tự tìm
Câu c dấu bằng chỗ nào ?
\(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(< =>-4x^2+28x+4x^3-20x=28x^2-13\)
\(< =>4x^3-\left(4x^2+28x^2\right)+8x+13=0\)
\(< =>4x^3-32x^2+8x+13=0\)
do cái này nghiệm màu mè nên mình sẽ làm cách khá khó hiểu
\(< =>x^3-7x^2+2x+\frac{13}{4}=0\)
Đặt \(x=y+\frac{7}{3}\)khi đó phương trình trở thành
\(\left(y+\frac{7}{3}\right)^3-7\left(y+\frac{7}{3}\right)^2+2\left(y+\frac{7}{3}\right)+\frac{13}{4}=0\)
\(< =>y^3+3y^2\frac{7}{3}+3y\frac{49}{9}-7\left(y^2+\frac{14y}{3}+\frac{49}{9}\right)+2y+\frac{14}{3}+\frac{13}{4}=0\)
\(< =>y^3+7y^2+\frac{49y}{3}-7y^2-\frac{98y}{3}-\frac{343}{9}+2y+\frac{95}{12}=0\)
\(< =>y^3-\frac{43y}{3}-\frac{1087}{36}=0\)
Đặt \(y=u+v\)sao cho \(uv=\frac{43}{9}\)khi đó pt trở thành
\(\left(u+v\right)^3-\frac{43\left(u+v\right)}{3}-\frac{1087}{36}=0\)
\(< =>u^3+v^3+3uv\left(u+v\right)-\left(u+v\right).\frac{43}{3}-\frac{1087}{36}=0\)
\(< =>u^3+v^3+\left(u+v\right)\left(3uv-\frac{43}{3}\right)-\frac{1087}{36}=0\)
\(< =>u^3+v^3=\frac{1087}{36}\)(*) (do \(uv=\frac{43}{9}\Leftrightarrow3uv-\frac{43}{3}=0\))
Ta có \(uv=\frac{43}{9}\Leftrightarrow u^3v^3=\frac{79507}{729}\)(**)
Từ (*) và (*) Suy ra được \(\hept{\begin{cases}u^3+v^3=\frac{1087}{36}\\u^3v^3=\frac{79507}{729}\end{cases}}\)
đến đây dễ rồi nhé ^^
tìm x biết
a.\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)6\left(x+1\right)^2=49\)49
b.\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=25\)
c.\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)