Tìm giá trị nhỏ nhất của : a² + ai + b² -2a -2b +2017
Giúpp em vớii, em cần gấp
a-b=1. tìm giá trị nhỏ nhất của A = 2a^2 + 2b^2
\(A=2\left(a^2+b^2\right)=2\left[\left(b+1\right)^2+b^2\right]=2\left(2b^2+2b+1\right)=4\left[b^2+b+\dfrac{1}{4}\right]+1=4\left(b+\dfrac{1}{2}\right)^2+1\ge1\)
" = " \(\Leftrightarrow b=-\dfrac{1}{2};a=\dfrac{1}{2}\)
giúp em với em đang cần gấp ạ
Cho biểu thức P =a4+b4-ab,với a,b là các số thực thoả mãn
a2+b2+ab=3.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P
https://tuhoc365.vn/qa/cho-bieu-thuc-p-a4-b4-ab-voi-ab-la-cac-so-thuc-thoa-man-a2-b2-ab-3-tim-gia-tri-lon/
Bạn có thể tham khảo ở đây nha.
Cho A = x² - 2x + 2024, tìm giá trị nhỏ nhất của A Giúp em với ạ, em cần gấp. Cảm ơn nhiều ạ!!!
=x^2-2x+1+2023
=(x-1)^2+2023>=2023
Dấu = xảy ra khi x=1
Cho A = x² - 2x + 2024, tìm giá trị nhỏ nhất của A
Giúp em với ạ, em cần gấp. Cảm ơn nhiều ạ!!!
\(A=x^2-2x+2024\)
\(A=x^2-2x+1+2023=\left(x-1\right)^2+2023\ge2023\)
Min A = 2023 khi x = 1
Cho các số thực không âm a,b. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{\left(a^2+2b+3\right).\left(b^2+2a+3\right)}{\left(2a+1\right).\left(2b+1\right)}\)
\(P\ge\dfrac{\left(2a+1+2b+1\right)\left(2a+1+2b+1\right)}{\left(2a+1\right)\left(2b+1\right)}\ge\dfrac{4\left(2a+1\right)\left(2b+1\right)}{\left(2a+1\right)\left(2b+1\right)}=4\)
Vậy \(P_{max}=4\), với a=b=1
Tìm giá trị nhỏ nhất của biểu thức:
a,A=\(\dfrac{x+1}{\sqrt{x}-2}\) với x>4
b,B=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\) với a,b,c>0 và abc=1
\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)
\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)
\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)
b.
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)
\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)
Cho hai số thực a,b thỏa mãn a > 0,0 < b < 2 . Tìm giá trị nhỏ nhất của biểu thức P = ( 2 b ) a 2 a − b a 2 + 2 a + 2 b a 2 b a
A. P min = 9 4 .
B. P min = 7 4 .
C. P min = 13 4 .
D. P min = 4.
Đáp án C.
Ta có P = 2 b a 2 b a − 1 2 + 1 2 . 2 b a + 1. Đặt t = 2 b a , do 0 < b < 2 → t > 1.
Xét hàm số f ( t ) = t t − 1 2 + t 2 + 1 trên 1 ; + ∞ .
Đạo hàm
f ' ( t ) = ( t − 1 ) 2 − 2 t ( t − 1 ) ( t − 1 ) 4 + 1 2 = t + 1 ( t − 1 ) 3 + 1 2 ; f ' ( t ) = 0 ⇔ t = 3.
Lập bảng biến thiên của hàm số, ta thấy min f ( x ) = f ( 3 ) = 13 4 . Vậy P min = 13 4 .
Cho \(a\ge0,b\ge0\) và thỏa mãn \(a+b=1\). Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{1+2a}+\sqrt{1+2b}\)
Lời giải:
Ta có:
$P^2=2+2(a+b)+2\sqrt{(1+2a)(1+2b)}=2+2+2\sqrt{1+2(a+b)+4ab}$
$=4+2\sqrt{3+4ab}$
Vì $a,b\geq 0$ nên $\sqrt{3+4ab}\geq \sqrt{3}$
$\Rightarrow P^2\geq 4+2\sqrt{3}$
$\Rightarrow P\geq \sqrt{3}+1$
Vậy $P_{\min}=\sqrt{3}+1$. Giá trị này được khi $(a,b)=(1,0)$ và hoán vị.
Cho hai số thực a,b thỏa mãn a>0, 0<b<a. Tìm giá trị nhỏ nhất của biểu thức P = ( 2 b ) a 2 a − b a 2 + 2 a + 2 b a 2 b a
A. P min = 9 4 .
B. P min = 7 4 .
C. P min = 13 4 .
D. P min = 4 .