Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hai số thực a,b thỏa mãn a > 0,0 < b < 2 . Tìm giá trị nhỏ nhất của biểu thức P = ( 2 b ) a 2 a − b a 2 + 2 a + 2 b a 2 b a

A. P min = 9 4 .

B. P min = 7 4 .

C. P min = 13 4 .

D. P min = 4.

Cao Minh Tâm
7 tháng 3 2019 lúc 10:13

Đáp án C.

Ta có P = 2 b a 2 b a − 1 2 + 1 2 . 2 b a + 1.  Đặt t = 2 b a ,  do  0 < b < 2 → t > 1.

Xét hàm số f ( t ) = t t − 1 2 + t 2 + 1  trên 1 ; + ∞ .  

Đạo hàm  

f ' ( t ) = ( t − 1 ) 2 − 2 t ( t − 1 ) ( t − 1 ) 4 + 1 2 = t + 1 ( t − 1 ) 3 + 1 2 ; f ' ( t ) = 0 ⇔ t = 3.

Lập bảng biến thiên của hàm số, ta thấy min f ( x ) = f ( 3 ) = 13 4 .  Vậy P min = 13 4 .  


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết