Cho các số thực a, b đồng thời thỏa mãn 3 - a 2 b = 1152 và log 5 ( a + b ) = 2 . Tính giá trị biểu thức P = a - b.
Cho số phức z = a + bi ( a , b ∈ ℕ ) thỏa mãn đồng thời hai điều kiện | z | = | z - 1 - i | và biểu thức A = | z - 2 + 2 i | + | z - 3 + i | đạt giá trị nhỏ nhất. Giá trị của biểu thức a + b bằng
A. -1.
B. 2.
C. -2.
D. 1.
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn đồng thời hai điều kiện z = z ¯ - 1 - i và biểu thức A = z - 2 + 2 i + z - 3 + i đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng
A. -1
B. 2
C. -2
D. 1
Cho a,b,c là các số thực dương thỏa mãn a log 5 2 = 4 , b log 4 6 = 1 , log , c log 7 3 = 49 Tính giá trị của biểu thức T = a log 2 2 5 + b log 4 2 6 + 3 c log 7 2 3
A. T=126
B. T = 5 + 2 3
C. T=88
D. T = 3 - 2 3
Cho a, b là hai số thực dương và a ≠ 1 thỏa mãn log a b = 2 . Tính giá trị biểu thức P = log a 2 b b 2 a
A. P = 2 + 3 2 2
B. P = 2 2 2 + 1
C. P = 2 - 1 2 + 1
D. P = - 6 + 5 2 2
Cho a, b là hai số thực dương và a ≠ 1 thỏa mãn log a b = 2 . Tính giá trị biểu thức P = log a 2 b b 2 a .
A. P = 2 + 3 2 2 .
B. P = 2 2 2 + 1 .
C. P = 2 - 1 2 + 1 .
D. P = − 6 + 5 2 2 .
Cho a,b là các số thực thỏa mãn log 2 . log 2 a - log b = 2 . Hỏi a,b thỏa mãn hệ thức nào dưới đây?
A. a = 100b
B. a = 100 - b
C. a = =100 + b
D. a = 100 b
Cho các số thực a, b thỏa mãn 1<a<b và log a b + log b a 2 = 3 . Tính giá trị của biểu thức T = log a b a 2 + b 2
A. 1 6
B. 3 2
C. 6
D. 2 3
Cho a, b là các số thực thuộc khoảng ( 0 ; π / 2 ) và thỏa mãn điều kiện cota-tan( π / 2 -b)=a-b. Tính giá trị của biểu thức P = 3 a + 7 b a + b
A. P=5
B. P=2
C. P=4
D. P=6