cho tam giác abc ah vuông góc với bc , hai trung tuyến bm,cn vuông góc với nhau.cm 1/bm^2+1/cn^2=4/ah^2
mn giúp vs !!! chỉ cần hướng đi là đc
Fast = tk
cho tam giác abc ah vuông góc với bc , hai trung tuyến bm,cn vuông góc với nhau.cm 1/bm^2+1/cn^2=4/ah^2
mong mn giúp đỡ
Cho tam giác ABC cân tại A vẽ hai đường trung tuyến BM và CN cắt nhau tại G
1 chứng minh BM=CN
2 chứng minh AG là tia phân giác của góc BAC
3 chứng minh MN song song với BC
4 gọi H là giao điểm của AG và BC chứng minh AH vuông góc với BC
1. Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB + cotC)
2. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A có H là trung điểm của BC, D là hình chiếu vuông góc của H trên AC và M là trung điểm HD. Đường thẳng BD đi qua E(0;4) và AC đi qua điểm F(-1;5). Tìm tọa độ các đỉnh A, B, C biết đường thẳng AM có phương trình x - 3y + 14 = 0 và A có hoành độ âm
Cho tam giác ABC nhọn (AB<AC). Gọi D là trung điểm của cạnh BC. Trên tia đối của tia DA lấy E sao cho DA=DE. Kẻ BM vuông góc với AD tại M, CN vuông góc với DE tại N.
a, Cm tam giác ABD= tam giác ECD. Suy ra AB//CE.
b, Cm BM // CN và BM=CN
c, Kẻ AH vuông góc với BD tại H, EK vuông góc với DC tại K. Đoạn AH cắt BM tại O, đoạn EK cắt CN tại I. Cm O,D,I thẳng hàng.
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
Cho tam giác ABC nhọn (AB<AC). Gọi D là trung điểm của cạnh BC. Trên tia đối của tia DA lấy E sao cho DA=DE. Kẻ BM vuông góc với AD tại M, CN vuông góc với DE tại N.
a, Cm tam giác ABD= tam giác ECD. Suy ra AB//CE.
b, Cm BM // CN và BM=CN
c, Kẻ AH vuông góc với BD tại H, EK vuông góc với DC tại K. Đoạn AH cắt BM tại O, đoạn EK cắt CN tại I. Cm O,D,I thẳng hàng.
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
Cho tam giác ABC nhọn (AB<AC). Gọi D là trung điểm của cạnh BC. Trên tia đối của tia DA lấy E sao cho DA=DE. Kẻ BM vuông góc với AD tại M, CN vuông góc với DE tại N.
a, Cm tam giác ABD= tam giác ECD. Suy ra AB//CE.
b, Cm BM // CN và BM=CN
c, Kẻ AH vuông góc với BD tại H, EK vuông góc với DC tại K. Đoạn AH cắt BM tại O, đoạn EK cắt CN tại I. Cm O,D,I thẳng hàng. Giải thôi không cần vẽ hình
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
Cho tam giác ABC vuông tại A, có góc B bằng 60 độ. H là trung điểm của BC, kẻ BM và CN cùng vuông góc với đường thẳng AH.
a, Tính số đo của góc BCA.
b, So sánh BM và CN.
c, CMR: BM // CN.
a) t/g ABC vuông tại A có: ABC + ACB = 90o
=> 60o + ACB = 90o
=> ACB = 90o - 60o = 30o
b) Xét t/g BHM vuông tại M và t/g CHN vuông tại N có:
BH = CH (gt)
BHM = CHN ( đối đỉnh)
Do đó, t/g BHM = t/g CHN ( cạnh huyền - góc nhọn)
=> BM = CN (2 cạnh tương ứng)
c) BM _|_ AH
CN _|_ AH
Do đó, BM // CN (đpcm)
EM CẦN GẤP,GIÚP EM VỚI ẠAA
Cho tam giác ABC vuông tại A,đường cao AH.Vẽ (A;AH).Từ B và C vẽ các tiếp tuyến BM,CN với (A;AH)(M,N là các tiếp điểm).Chứng minh:
a)BC=BM+CN
b)Góc MBC+Góc NCB=180 độ.Từ đó suy ra BM//CN
c)3 điểm M,A,N thẳng hàng
a: ta có: BH⊥AH tại H
nên BH là tiếp tuyến của (A;AH) có H là tiếp điểm
Ta có: CH⊥AH tại H
nên CH là tiếp tuyến của (A;AH) có H là tiếp điểm
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm
BM là tiếp tuyến có M là tiếp điểm
Do đó: BH=BM
Xét (A) có
CH là tiếp tuyến có H là tiếp điểm
CN là tiếp tuyến có N là tiếp điểm
Do đó: CH=CN
Ta có: BH+CH=BC
nên BC=BM+CN
EM CẦN GẤP,GIÚP EM VỚI ẠAA
Cho tam giác ABC vuông tại A,đường cao AH.Vẽ (A;AH).Từ B và C vẽ các tiếp tuyến BM,CN với (A;AH)(M,N là các tiếp điểm).Chứng minh:
a)BC=BM+CN
b)Góc MBC+Góc NCB=180 độ.Từ đó suy ra BM//CN
c)3 điểm M,A,N thẳng hàng
a: ta có: BH\(\perp\)AH tại H
nên BH là tiếp tuyến của (A;AH) có H là tiếp điểm
Ta có: CH\(\perp\)AH tại H
nên CH là tiếp tuyến của (A;AH) có H là tiếp điểm
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm
BM là tiếp tuyến có M là tiếp điểm
Do đó: BH=BM
Xét (A) có
CH là tiếp tuyến có H là tiếp điểm
CN là tiếp tuyến có N là tiếp điểm
Do đó: CH=CN
Ta có: BH+CH=BC
nên BC=BM+CN