tìm tập xác định y = cos \(\sqrt{x}\)
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);
b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} .\)
a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).
Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)
b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\)
Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\)
\(y=\dfrac{\sin x-1}{2\cos-\sqrt{3}}\)
tìm tập xác định
Hàm số xác định khi: \(2cosx-\sqrt{3}\ne0\Leftrightarrow cosx\ne\dfrac{\sqrt{3}}{2}\Leftrightarrow x\ne\pm\dfrac{\pi}{6}+k2\pi\).
tìm tập xác định
a) y = cos\(\dfrac{x-1}{x^2-1}\)
b) y = \(sin\sqrt{x}\)
Lời giải:
a. TXĐ: $x^2-1\neq 0\Leftrightarrow (x-1)(x+1)\neq 0$
$\Leftrightarrow x\neq \pm 1$
Vậy TXĐ $\mathbb{R}\setminus \left\{\pm 1\right\}$
b. TXĐ: $x\geq 0$ hay $[0;+\infty)$
tìm tập xác định\(y=\dfrac{1}{\left(\cos\dfrac{x}{2}-3\right)\left(\tan x-\sqrt{3}\right)}\)
\(y=\sqrt{1+\cot^22x}\)
a, Hàm số xác định khi: \(\left\{{}\begin{matrix}cos\dfrac{x}{2}\ne3\\tanx\ne\sqrt{3}\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{3}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
b, Hàm số xác định khi: \(sin2x\ne0\Leftrightarrow2x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
Tìm tập xác định của y=f(x)=\(\dfrac{\sin\left(3x\right)}{\tan^2\left(x\right)-1}+\sqrt{\dfrac{2-\cos\left(x\right)}{1+\cos\left(x\right)}}\)
Hàm số xác định khi: \(\left\{{}\begin{matrix}tanx\ne\pm1;cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)
Tìm tập xác định của hàm số
\(y=f\left(x\right)=\dfrac{\sqrt{4\pi^2-x^2}}{cos\left(x\right)}\)
Hàm số xác định khi: \(\left\{{}\begin{matrix}4\pi^2-x^2\ge0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2\pi\le x\le2\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
1.Tìm tập xác định của hàm số: y= \(\sqrt{1+sinx-2cos^2x}\)
2. Cho hàm số: y = \(\sqrt{sin^4x+cos^4x-2msinx.cosx}\)
Tìm các giá trị của m để xác định với mọi x.
y = 2sinx / cos(x+1)
tìm tập xác định
\(y=\dfrac{2\sin x}{\cos\left(x+1\right)}\\ ĐK:\cos\left(x+1\right)\ne0\\ \Leftrightarrow x\ne k2\pi-1\)
y=2sinxcos(x+1)
dk :cos(x+1)≠0
= x≠k2π−1
\(y=\dfrac{2sinx}{cos\left(x+1\right)}\)
Hàm số xác định khi: \(cos\left(x+1\right)\ne0\Leftrightarrow x+1\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{2}-1+k\pi\)
tìm tập xác định
\tan x+(2021)/(\cos 2x-1)=y