\(\sqrt[3]{x^3+x+1}=\sqrt[3]{7x-3}\)
1, \(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
2, \(\sqrt{x-3}-2.\sqrt{x^2-3x}=0\)
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
4, \(x-5\sqrt{x}+4=0\)
1,\(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{x}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{5}-1\right|+\sqrt{5}+1\right)\)\(=\dfrac{1}{\sqrt{2}}\left|\sqrt{5}-1+\sqrt{5}+1\right|=\dfrac{1}{\sqrt{2}}.2\sqrt{5}\)\(=\sqrt{10}\)
2, \(\sqrt{x-3}-2\sqrt{x^2-3x}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1-2\sqrt{x}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\left(ktm\right)\end{matrix}\right.\)
Vậy pt có nghiệm x=3
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\left(đk:x>-\dfrac{5}{7}\right)\)
\(\Leftrightarrow9x-7=7x+5\)
\(\Leftrightarrow x=6\left(tm\right)\)
4, \(x-5\sqrt{x}+4=0\)(đk: \(x\ge0\))
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\) (tm)
Vậy...
1) Bạn tự làm
2) ĐK: \(x\ge3\)
PT \(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\2\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)
Vậy ...
3) ĐK: \(x>-\dfrac{5}{7}\)
PT \(\Rightarrow9x-7=7x+5\) \(\Leftrightarrow x=6\)
Vậy ...
4) ĐK: \(x\ge0\)
PT \(\Leftrightarrow x-4\sqrt{x}-\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)
Vậy ...
Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
Tính \(M=\dfrac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)
\(x=1+1.\sqrt[3]{2}+\sqrt[3]{2}^2=\dfrac{\sqrt[3]{2}^3-1^3}{\sqrt[3]{2}-1}=\dfrac{1}{\sqrt[3]{2}-1}\)
\(\Leftrightarrow\dfrac{1}{x}+1=\sqrt[3]{2}\)
\(\Leftrightarrow\left(x+1\right)^3=2x^3\Leftrightarrow x^3-3x^2-3x-1=0\).
Do đó \(M=\dfrac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)
\(M=\dfrac{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(4x^2+8x+4\right)}-6}{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(x^2-4x+4\right)}}\)
\(M=\dfrac{\sqrt{\left(2x+2\right)^2}-6}{\sqrt{\left(x-2\right)^2}}=\dfrac{2x+2-6}{x-2}=2\). (Do \(x>2\))
Rút gọn biểu thức:P=\(\left(\dfrac{3\sqrt{x}}{\sqrt{x}-3}+\dfrac{4\sqrt{x}}{\sqrt{x}+3}+\dfrac{7x-3}{9-x}\right):\left(\dfrac{2\sqrt{x}-4}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{3x+9\sqrt{x}+4x-12\sqrt{x}-7x+3}{x-9}:\dfrac{2\sqrt{x}-4-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{3\sqrt{x}+3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}=\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
1) GHPT \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{2-x}+\sqrt{y+1}=\sqrt{3}\end{matrix}\right.\)
2) GPT \(7x^2+7x=\sqrt{\dfrac{4x+9}{28}}\)
3) tìm số dương x,y,z thỏa \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=2016\)
Đề bị lỗi không biết cái đề ghi gì trong đó nữa
câu 1:
từ giả thiết\(\Rightarrow\sqrt{x+1}+\sqrt{2-y}=\sqrt{y+1}+\sqrt{2-x}\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{2-y}-\sqrt{2-x}\right)=0\)
\(\Leftrightarrow\dfrac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{2-y-2+x}{\sqrt{2-y}+\sqrt{2-x}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{1}{\sqrt{2-y}+\sqrt{2-x}}\right)=0\)
hiển nhiên trong ngoặc lớn khác 0 nên x=y thay vào 1 trong 2 phương trình đầu tính (nhớ ĐKXĐ đấy )
câu 2:
chịu
câu 3:
đánh giá: ta luôn có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
chứng minh: bất đẳng thức trên tương đương \(\dfrac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)(luôn đúng )
dấu = xảy ra khi \(x=y=z=\dfrac{2016}{3}=672\)
Giải pt:
a) x=\(\sqrt{1-\dfrac{1}{x}}+\sqrt{x-\dfrac{1}{x}}\)
b) \(\sqrt{x^2+x}+\sqrt{x-x^2}=x+1\)
c) \(\sqrt{x^2-x}+\sqrt{x^2+2x}=2\sqrt{x^2}\)
d)\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
e) \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
f) \(4x\sqrt{x+7}+3x\sqrt{7x-3}=6x^2+2\sqrt{7x^2+46x-21}\)
a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\0>x\ge-1\end{matrix}\right.\). Để pt có nghiệm => x>0=> \(x\ge1\) pt<=> \(x-\sqrt{1-\dfrac{1}{x}}=\sqrt{x-\dfrac{1}{x}}.Bìnhphương2vetaco\left(x-\sqrt{1-\dfrac{1}{x}}\right)^2=x-\dfrac{1}{x}\)\(\Leftrightarrow x^2+1-\dfrac{1}{x}-2x\sqrt{1-\dfrac{1}{x}}=x-\dfrac{1}{x}\Leftrightarrow x^2-x+1=2\sqrt{x^2-x}\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\Leftrightarrow x^2-x=1\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
b) ĐKXĐ\(0\le x\le1\) pt \(\Leftrightarrow\left(\sqrt{x^2+x}+\sqrt{x-x^2}\right)^2=\left(x+1\right)^2\Leftrightarrow2x+2x.\sqrt{1-x^2}=x^2+2x+1\Leftrightarrow x^2-2x\sqrt{1-x^2}+1-x^2+x^2=0\Leftrightarrow\left(x-\sqrt{1-x^2}\right)^2+x^2=0\)
c)ĐKXĐ:x=0 hoặc \(x\ge1;x\le-2\)
Nếu x=0=> VT=VP=0=> x=0 là 1 no
Nếu \(x\ge1.\)pt<=>\(\sqrt{x-1}+\sqrt{x+2}=2\sqrt{x}\Leftrightarrow x-1+x+2+2\sqrt{x^2+x-2}=4x\Leftrightarrow2x-1=2\sqrt{x^2+x-2}\Leftrightarrow4x^2-4x+1=4\left(x^2+x-2\right)\left(Dox\ge1\right)\)\(\Leftrightarrow8x=9\)=>....
Nếu \(x\le-2.\)Chia cả 2 vế của pt cho \(\sqrt{-x}\).Giải tương tự x>=1
giải pt :
a,\(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25x+2}\)
b,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
c, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
giải pt :
a, \(x^2-4x-2=2\sqrt{x^3+1}\)
b, \(x^2-7x+1=4\sqrt{x^4+x^2+1}\)
c, \(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25+2}\)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)