Trong mặt phẳng tọa độ Oxy cho hai điểm A(-2,-2), B(5,-4). Tìm tọa độ trọng tâm G của ∆OAB
Trong mặt phẳng Oxy cho tam giác đều OAB có cạnh bằng 2, AB song song với Ox, điểm A có hoành độ và tung độ dương
a) Tìm tọa độ hai đỉnh A và B
b) Tìm tọa độ trọng tâm G của tam giác OAB
a) Do AB//Ox và tam giác OAB đều nên điểm A đối xứng với điểm B qua Ox.
Suy ra: AB = 2 = 2b. Nên b = 1.
Áp dụng định lý Pi-ta-go: \(OH=\sqrt{AB^2-HA^2}=\sqrt{2^2-1^2}=\sqrt{3}\).
Suy ra: \(a=\sqrt{3}\Rightarrow x_A=\sqrt{3};y_B=-\sqrt{3}\).
Vậy \(A\left(1;\sqrt{3}\right),B\left(-1;-\sqrt{3}\right)\).
trong mặt phẳng Oxy ,cho ba điểm A<-1,1> B,<-2,3 > C<4,-5>
Tìm tọa độ trung điểm I của doạn BC vs tọa độ trọng tâm G của tam giác ABC
\(\left\{{}\begin{matrix}x_G=\dfrac{-1+\left(-2\right)+4}{3}=\dfrac{1}{3}\\y_G=\dfrac{1+3+\left(-5\right)}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 3); B(-2; 4); C ( 5; 3). Tìm tọa độ trọng tâm G của tam giác đã cho.
A. G 2 ; 10 3 .
B. G 8 3 ; − 10 3 .
C. G 2 ; 5 .
D. G 4 3 ; 10 3 .
Tọa độ trọng tâm G x G ; y G là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .
Chọn D.
Trong mặt phẳng tọa độ Oxy, cho các điểm A(1; 3), B(2; 4), C(-3; 2).
a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác.
b) Tìm tọa độ trung điểm M của đoạn thẳng AB.
c) Tìm tọa độ trọng tâm G của tam giác ABC.
d) Tìm điểm D(x; y) để O(0; 0) là trọng tâm của tam giác ABD.
a)
Ta có: \(\overrightarrow {AB} = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC} = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\)
Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)).
Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.
Vậy A, B, C là ba đỉnh của một tam giác.
b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\)
c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\)
d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\)
\( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\)
\(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = - 7\end{array} \right.\end{array}\)
Vậy tọa độ điểm D là (-3; -7).
Trong mặt phẳng Oxy cho 2 điểm A(4;0), B(0;-2). Tìm tọa độ tâm đường tròn ngoại tiếp Δ OAB
Ta thấy A,B một điểm thì thuộc trục tung, một điểm thì thuộc trục hoành nên tam giác OAB vuông tại O
=> Tâm đường tròn ngoại tiếp là trung điểm của AB
có tọa độ (2; -1)
Trong mặt phẳng tọa độ Oxy, cho tam giác OAB với A(1; 3) và B (4; 2). Tìm tọa độ điểm E là chân đường phân giác trong góc O của tam giác OAB
A. E = 5 2 ; 5 2 .
B. E = 3 2 ; − 1 2 .
C. E = − 2 + 3 2 ; 4 + 2 .
D. E = − 2 + 3 2 ; 4 − 2 .
Theo tính chất đường phân giác của tam giác ta có E A E B = O A O B = 2 2 .
Vì E nằm giữa hai điểm A, B nên E A → = − 2 2 E B → . *
Gọi E(x; y). Ta có E A → = 1 − x ; 3 − y E B → = 4 − x ; 2 − y .
Từ (*), suy ra 1 − x = − 2 2 4 − x 3 − y = − 2 2 2 − y ⇔ x = − 2 + 3 2 y = 4 − 2 .
Chọn D.
Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(-4;1), B(2;4), C(2;-2)
a) Tìm tọa độ trọng tâm của tam giác ABC
b) Tìm tọa độ điểm D sao cho C là trọng tâm của tam giá ABD
c) Tìm tọa độ điểm E sao cho tứ giác ABCE là hình bình hành
Trong mặt phẳng tọa độ Oxy cho các điểm M(0; 4), N(–3; 2) và P(9; –3).
Tọa độ trọng tâm G của tam gác MNP là:
A. G(6; 3)
B. G(3;-1/2)
C. G(2; –1)
D. G(2; 1)
Tọa độ trọng tâm G của tam gác MNP là:
x G = x M + x N + x P 3 = 0 + ( − 3 ) + 9 3 = 2 y G = y M + y N + y P 3 = 4 + 2 + ( − 3 ) 3 = 1 ⇒ G ( 2 ; 1 )
Đáp án D
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với và . a) Tính tọa độ điểm G và vectơ ( với điểm G là trọng tâm tam giác ABC ). b) Tìm tọa độ điểm D là giao điểm của đường thẳng BC với trục hoành.
Đề thiếu hết dữ liệu tọa độ các điểm rồi bạn