giải phương trình
\(\sqrt{x^2-9x+24}-\sqrt{6x^2-59x+149}=5-x\)
Giải các phương trình:
a) \(\sqrt{x^2-9x+24}-\sqrt{6x^2-59x+149}=5-x\)
b) \(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
c) \(\sqrt{3+x}+\sqrt{6-x}-\sqrt{-x^2+3x+18}=3\)
d) \(2\sqrt{\left(1+x\right)^2}-3\sqrt{1-x^2}+\sqrt{\left(1-x\right)^2}=0\)
Dài Vãi mik ko bít giải phhương trình sorry nha
a) \(\sqrt{x^2-9x+24}-\sqrt{6x^2-59x+149}=5x\)
\(\Leftrightarrow\sqrt{6x^2-59+149}-\sqrt{x^2-9x+24}=x-5\)
\(\Leftrightarrow\frac{5\left(x-5\right)^2}{\sqrt{6x^2-59+149}+\sqrt{x^2-9x+24}}=x-5\)
\(\Leftrightarrow\orbr{\begin{cases}x-5\\\sqrt{6x^2-59x+149}+\sqrt{x^2-9x+24}=5\left(x-5\right)\end{cases}}\)(*)
Từ (*) ta có hpt:
\(\hept{\begin{cases}\sqrt{6x^2-59x+149}-\sqrt{x^2-9x+24}=x-5\\\sqrt{6x^2-59x+149}+\sqrt{x^2-9x+24}=5\left(x-5\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{6x^2-59x+149}=3\left(x-5\right)\\\sqrt{6x^2-59x+149}+\sqrt{x^2-9x+24}=5\left(x-5\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge5\\x=\frac{10}{2}\\\sqrt{6x^2-59x+149}+\sqrt{x^2-9x+24}=5\left(x-5\right)\end{cases}}\)
=> Nghiệm PT là: \(\orbr{\begin{cases}x=5\\x=\frac{10}{2}\end{cases}}\)
b) \(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
\(\Rightarrow\left(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}\right)^2=\left(2x+4\right)^2\)
\(\Leftrightarrow3x^2+16x+17+2\sqrt{\left(2x^2+16+18\right)\left(x^2-1\right)}=4x^2+16x+16\)
\(\Leftrightarrow x^2-1=2\sqrt{\left(2x^2+16x+18\right)\left(x^2-1\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\\sqrt{x^2-1}=2\sqrt{2x^2+16x+18}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\4\left(2x^2+16x+18\right)=x^2-1\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\frac{-32\pm3\sqrt{57}}{7}\end{cases}}\)
Thử lại thì nghiệm của phương trình đã cho là: \(\orbr{\begin{cases}x=\pm1\\x=\frac{-37\pm3\sqrt{57}}{7}\end{cases}}\)
Giair pt sau:
a, \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
b, \(\sqrt{x^2-9x+24}-\sqrt{6x^2-59x+149}=5-x\)
c, \(2x^2+4x+3\sqrt{3-2x-x^2}=1\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)
Giải các phương trình sau:
a) \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \)
b) \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \)
a) \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \)
Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \) ta được
\(3{x^2} - 6x + 1 = - 2{x^2} - 9x + 1\)
\( \Leftrightarrow 5{x^2} + 3x = 0\)
\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)
b) \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \)
Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \) , ta được
\(2{x^2} - 3x - 5 = {x^2} - 7\)
\( \Leftrightarrow {x^2} - 3x + 2 = 0\)
\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)
Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
Giải phương trình:
a. \(\sqrt{x^2-4}-x^2+4=0\)
b. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
c. \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
d. \(\sqrt{9x^2+6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
a/ĐK: \(x\ge2\)
\(PT\Leftrightarrow x^2-4=\sqrt{x^2-4}\)
Đặt \(x^2-4=t\Rightarrow x^2=t+4\)
Thay vào,phương trình đã cho tương đương với:
\(t=\sqrt{t}\Leftrightarrow t^2=t\Rightarrow\orbr{\begin{cases}t=1\\t=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-4=1\\x^2-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=5\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\\x=2\end{cases}}\) (t/m)
Giải phương trình
a) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
b) \(\sqrt{x^2-4}-x^2+4=0\)
c) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
d) \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)
Đặt \(x-3=t\) pt thành
\(\sqrt{t\left(t-6\right)}-t=0\)
\(\Leftrightarrow t^2-6t=t^2\)
\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)
b)\(\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
Đặt \(\sqrt{x^2-4}=t\) pt thành
\(t=t^2\Rightarrow t\left(1-t\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).
Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\)
Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)
GIẢI PHƯƠNG TRÌNH:
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b)\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
c)\(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
d)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
Giải các phương trình
a) \(\sqrt{\left(2x+1\right)^2}\)=\(\sqrt{\left(x-1\right)^2}\)
b) \(\sqrt{9x^2-6x+1}\)=\(\sqrt{x^2-4x+4}\)
Lời giải:
a.
PT $\Leftrightarrow |2x+1|=|x-1|$
$\Leftrightarrow 2x+1=x-1$ hoặc $2x+1=-(x-1)$
$\Leftrightarrow x+2=0$ hoặc $3x=0$
$\Leftrightarrow x=-2$ hoặc $x=0$ (tm)
b.
PT $\Leftrightarrow 9x^2-6x+1=x^2-4x+4$
$\Leftrightarrow 8x^2-2x-3=0$
$\Leftrightarrow (4x-3)(2x+1)=0$
$\Leftrightarrow 4x-3=0$ hoặc $2x+1=0$
$\Leftrightarrow x=\frac{3}{4}$ hoặc $x=\frac{-1}{2}$ (tm)
a: =>|2x+1|=|x-1|
=>2x+1=x-1 hoặc 2x+1=-x+1
=>x=-2 hoặc x=0
b: =>|3x-1|=|x-2|
=>3x-1=x-2 hoặc 3x-1=-x+2
=>2x=-1 hoặc 4x=3
=>x=-1/2 hoặc x=3/4