Chứng minh \(a+b\le2\sqrt{a^2+b^2}\) với mọi a, b \(\exists\) Z
Với mọi a, b, c, x, y, z \(\in\) R, chứng minh : \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\)
Ta sẽ chứng minh:
\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
Thật vậy, bình phương 2 vế, BĐT tương đương:
\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)
\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)
\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)
\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)
\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)
1.cho các số thực x,y,z thay đổi thỏa mãn 0\(\le x,y,z\le2\) và x+y+z=4 chứng minh rằng \(x^2+y^2+z^2\le8\)
2.\(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\) với a,b,c,a',b',c' >0
chứng minh \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Cho a,b,c > 0 và ab+bc+ca=1 Chứng minh \(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)
\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+c\right)\left(b+a\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\le_{AM-GM}\dfrac{a+b+a+c}{2}+\dfrac{b+c+b+a}{2}+\dfrac{c+a+c+b}{2}=2\left(a+b+c\right)=VP\) (đpcm)
Đầy đủ hơn 1 tí nhé
Theo gt : ab + bc + ca = 1 nên a2 + 1 = a2 + ab + bc + ca
= ( a + b )( a + c )
- Áp dụng bđt Cauchy ta có :
\(\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\frac{\left(a+b\right)\left(a+c\right)}{2}\)
- Tương tư ta cũng có :
\(\sqrt{b^2+1}\le\frac{\left(b+a\right)+\left(b+c\right)}{2}\)và \(\sqrt{c^2+1}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}\)
Từ đó suy ra : VT \(\le\frac{\left(a+b\right)+\left(a+c\right)+\left(b+a\right)+\left(b+c\right)+\left(c+a\right)+\left(c+b\right)}{2}\)
\(\le2\left(a+b+c\right)=VP\left(đpcm\right)\)
Cho a + b = 2. Chứng minh rằng:
\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Giúp mình với!!!
Có \(a+1+1\ge3\sqrt[3]{a}\)
\(b+1+1\ge3\sqrt[3]{b}\)
\(\Rightarrow a+b+1+1+1+1\ge3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)
\(\Rightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\le6\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}\le2\)
"=" tại a=b=1
Cho a, b, c là các số thực dương thoả mãn \(a^2+b^2+c^2+abc=4\)
Chứng minh rằng: \(b+c\le2\sqrt{2-a}\)
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
Chứng minh rằng với các số a,b thỏa mãn \(\left|a\right|\le1,\left|b\right|\le1\) ta có bất đẳng thức \(\sqrt{1-a^2}+\sqrt{1-b^2}\le2\sqrt{1-\left(\frac{a+b}{2}\right)^2}\)
Chứng minh \(\sqrt{a^{2} +b^{2} }\) ≥ \(\dfrac{a +b}{\sqrt{2}}\) với mọi a; b ≥ 0.
\(\sqrt{a^2+b^2}>=\dfrac{a+b}{\sqrt{2}}\)
=>\(\sqrt{2a^2+2b^2}>=a+b\)
=>\(2a^2+2b^2>=\left(a+b\right)^2=a^2+2ab+b^2\)
=>\(a^2-2ab+b^2>=0\)
=>\(\left(a-b\right)^2>=0\)(luôn đúng)
cho a,b,c >0 thỏa \(a+b+c\le2\)
chứng minh \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{\sqrt{97}}{2}\)
\(VT\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(VT\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(VT\ge\sqrt{\left(a+b+c\right)^2+\frac{16}{\left(a+b+c\right)^2}+\frac{65}{\left(a+b+c\right)^2}}\)
\(VT\ge\sqrt{2\sqrt{\frac{16\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}+\frac{65}{2^2}}=\frac{\sqrt{97}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)