Có \(a+b\le2\sqrt{a^2+b^2}\) (1)
<=> \(\left(a+b\right)^2\le4\left(a^2+b^2\right)\)
<=>\(a^2+b^2+2ab\le4a^2+4b^2\)
<=> \(0\le3a^2-2ab+3b^2\)
<=> \(0\le3\left(a^2-2.\frac{1}{3}ab+\frac{1}{9}b^2\right)+\frac{8}{3}b^2\)
<=>\(0\le3\left(a-\frac{1}{3}b\right)^2+\frac{8}{3}b^2\) (luôn đúng với mọi a,b nguyên)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
Vì ta đang CM tương đương => (1) đc CM