\(\sqrt{x^2+4}=\sqrt{2x+3}\) . Tìm x
Tìm điều kiện có nghĩa:
1) \(\sqrt{2x^2}\)
2) \(\sqrt{-x}\)
3) \(\sqrt{-x^2-3}\)
4) \(\sqrt{x^2+2x+3}\)
5) \(\sqrt{-a^2+8a-16}\)
6) \(\sqrt[]{16x^2-25}\)
7) \(\sqrt{4x^2-49}\)
8) \(\sqrt{8-x^2}\)
9) \(\sqrt{x^2-12}\)
10) \(\sqrt{x^2+2x-3}\)
11) \(\sqrt{2x^2+5x+3}\)
12) \(\sqrt{\dfrac{4}{x-1}}\)
13) \(\sqrt{\dfrac{-1}{x-3}}\)
14) \(\sqrt{\dfrac{-3}{x+2}}\)
15) \(\sqrt{\dfrac{1}{2a-1}}\)
16) \(\sqrt{\dfrac{2}{3-2a}}\)
17) \(\sqrt{\dfrac{-1}{2a-5}}\)
18) \(\sqrt{\dfrac{-2}{3-5a}}\)
19) \(\sqrt{\dfrac{-a}{5}}\)
20) \(\dfrac{1}{\sqrt{-3a}}\)
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
1) ĐKXĐ: \(x\ge-2\)
\(pt\Leftrightarrow\dfrac{\sqrt{x+2}}{2}+5\sqrt{x+2}-2\sqrt{x+2}=14\)
\(\Leftrightarrow\dfrac{\sqrt{x+2}+6\sqrt{x+2}}{2}=14\Leftrightarrow7\sqrt{x+2}=28\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
2) ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow2x+3=x^2\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
3) \(pt\Leftrightarrow\sqrt{\left(5x+2\right)^2}=1\Leftrightarrow\left|5x+2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=1\\5x+2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4) ĐKXĐ: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{2}\\x\le-1\end{matrix}\right.\)
\(pt\Leftrightarrow\dfrac{x+1}{2x-1}=4\Leftrightarrow x+1=8x-4\)
\(\Leftrightarrow7x=5\Leftrightarrow x=\dfrac{5}{7}\left(tm\right)\)
5) ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow\dfrac{x-2}{3x+1}=36\)
\(\Leftrightarrow x-2=108x+36\Leftrightarrow107x=-38\Leftrightarrow x=-\dfrac{38}{107}\left(ktm\right)\)
Vậy \(S=\varnothing\)
Tìm x, biết:
a) \(\sqrt{x^2-2x+1}=2\)
b)\(\sqrt{x^2-1}=x\)
c) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
d) \(x-5\sqrt{x-2}=-2\)
e) \(2x-3\sqrt{2x-1}-5=0\)
`a)sqrt{x^2-2x+1}=2`
`<=>sqrt{(x-1)^2}=2`
`<=>|x-1|=2`
`**x-1=2<=>x=3`
`**x-1=-1<=>x=-1`.
Vậy `S={3,-1}`
`b)sqrt{x^2-1}=x`
Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)
`<=>x>=1`
`pt<=>x^2-1=x^2`
`<=>-1=0` vô lý
Vậy pt vô nghiệm
`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`
`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`
`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`
`<=>2sqrt{x-5}=4`
`<=>sqrt{x-5}=2`
`<=>x-5=4`
`<=>x=9(tmđk)`
Vậy `S={9}.`
`d)x-5sqrt{x-2}=-2(x>=2)`
`<=>x-2-5sqrt{x-2}+4=0`
Đặt `a=sqrt{x-2}`
`pt<=>a^2-5a+4=0`
`<=>a_1=1,a_2=4`
`<=>sqrt{x-2}=1,sqrt{x-2}=4`
`<=>x_1=3,x_2=18`,
`e)2x-3sqrt{2x-1}-5=0`
`<=>2x-1-3sqrt{2x-1}-4=0`
Đặt `a=sqrt{2x-1}(a>=0)`
`pt<=>a^2-3a-4=0`
`a-b+c=0`
`<=>a_1=-1(l),a_2=4(tm)`
`<=>sqrt{2x-1}=4`
`<=>2x-1=16`
`<=>x=17/2(tm)`
Vậy `S={17/2}`
d.
ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:
$a^2+2-5a=-2$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Rightarrow a=1$ hoặc $a=4$
$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$
$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)
e. ĐKXĐ: $x\geq \frac{1}{2}$
Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:
$a^2+1-3a-5=0$
$\Leftrightarrow a^2-3a-4=0$
$\Leftrightarrow (a+1)(a-4)=0$
Vì $a\geq 0$ nên $a=4$
$\Leftrightarrow \sqrt{2x-1}=4$
$\Leftrightarrow x=\frac{17}{2}$
a.
$\sqrt{x^2-2x+1}=2$
$\Leftrightarrow \sqrt{(x-1)^2}=2$
$\Leftrightarrow |x-1|=2$
$\Rightarrow x-1=\pm 2$
$\Leftrightarrow x=3$ hoặc $x=-1$ (đều thỏa mãn)
b. ĐKXĐ: $x\geq 1$ hoặc $x\leq -1$
PT \(\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2-1=x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ 1=0\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm
c. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x=2^2+5=9$ (thỏa mãn)
Tìm ĐKXĐ:
a) \(\sqrt{72x}\)
b) \(\dfrac{2x+3}{\sqrt{x^2-4}}\)
c) \(\sqrt{\left(2x+1\right)\left(x+2\right)}\)
d) \(3-\sqrt{16x^2-1}\)
e) \(\sqrt{\dfrac{3+x}{4-x}}\)
\(a,\sqrt{72x}\) xác định \(\Leftrightarrow72x\ge0\Leftrightarrow x\ge0\)
\(b,\dfrac{2x+3}{\sqrt{x^2-4}}\) xác định \(\Leftrightarrow x^2-4>0\Leftrightarrow\left(x-2\right)\left(x+2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x+2>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>-2\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< -2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)
\(c,\sqrt{\left(2x+1\right)\left(x+2\right)}\) xác định \(\Leftrightarrow\left(2x+1\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}2x+1\ge0\\x+2\ge0\end{matrix}\right.\\\left[{}\begin{matrix}2x+1\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\ge-2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\)
\(d,3-\sqrt{16x^2-1}\) xác định \(\Leftrightarrow16x^2-1\ge0\Leftrightarrow\left(4x-1\right)\left(4x+1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}4x-1\ge0\\4x+1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}4x-1\le0\\4x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ge-\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x\le\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\)
\(e,\sqrt{\dfrac{3+x}{4-x}}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3+x\ge0\\4-x>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-3\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)
tìm x:
\(\sqrt{x^2+x+1}=1\)
\(\sqrt{x^2+1}=-3\)
\(\sqrt{x^2-10x+25}=7-2x\)
\(\sqrt{2x+5}=5\)
\(\sqrt{x^2-4x+4}-2x+5=0\)
√(x² + x + 1) = 1
⇔ x² + x + 1 = 1
⇔ x² + x = 0
⇔ x(x + 1) = 0
⇔ x = 0 hoặc x + 1 = 0
*) x + 1 = 0
⇔ x = -1
Vậy x = 0; x = -1
--------------------
√(x² + 1) = -3
Do x² ≥ 0 với mọi x
⇒ x² + 1 > 0 với mọi x
⇒ x² + 1 = -3 là vô lý
Vậy không tìm được x thỏa mãn yêu cầu
--------------------
√(x² - 10x + 25) = 7 - 2x
⇔ √(x - 5)² = 7 - 2x
⇔ |x - 5| = 7 - 2x (1)
*) Với x ≥ 5, ta có
(1) ⇔ x - 5 = 7 - 2x
⇔ x + 2x = 7 + 5
⇔ 3x = 12
⇔ x = 4 (loại)
*) Với x < 5, ta có:
(1) ⇔ 5 - x = 7 - 2x
⇔ -x + 2x = 7 - 5
⇔ x = 2 (nhận)
Vậy x = 2
--------------------
√(2x + 5) = 5
⇔ 2x + 5 = 25
⇔ 2x = 20
⇔ x = 20 : 2
⇔ x = 10
Vậy x = 10
-------------------
√(x² - 4x + 4) - 2x +5 = 0
⇔ √(x - 2)² - 2x + 5 = 0
⇔ |x - 2| - 2x + 5 = 0 (2)
*) Với x ≥ 2, ta có:
(2) ⇔ x - 2 - 2x + 5 = 0
⇔ -x + 3 = 0
⇔ x = 3 (nhận)
*) Với x < 2, ta có:
(2) ⇔ 2 - x - 2x + 5 = 0
⇔ -3x + 7 = 0
⇔ 3x = 7
⇔ x = 7/3 (loại)
Vậy x = 3
1)
\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)
3)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)
Nếu \(x\ge5\) thì
\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)
=> Loại trường hợp này
Nếu \(x< 5\) thì
\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)
=> Nhận trường hợp này
Vậy x = 2
4)
\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)
5)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)
Nếu \(x\ge2\) thì
\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)
=> Nhận trường hợp này
Nếu \(x< 2\) thì
\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)
=> Loại trường hợp này
Vậy x = 3
Tìm x
\(a.\sqrt{2+\sqrt{3+\sqrt{x}}=3}\)
\(b.\sqrt{x^2-4}+\sqrt{x+2}=0\)
\(c.\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{x^2+2x-3}\)
2) \(\sqrt{2x^2+5x+3}\)
3) \(\sqrt{\dfrac{4}{x-1}}\)
4) \(\sqrt{\dfrac{-1}{x-3}}\)
5) \(\sqrt{\dfrac{-3}{x+2}}\)
6) \(\sqrt{\dfrac{1}{2a-1}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1) ĐKXĐ: \(x^2+2x-3\ge0\Leftrightarrow\left(x+1\right)^2\ge4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge2\\x+1\le-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)
2) ĐKXĐ: \(2x^2+5x+3\ge0\Leftrightarrow2\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{8}\Leftrightarrow\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{5}{4}\ge\dfrac{1}{4}\\x+\dfrac{5}{4}\le-\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-\dfrac{3}{2}\end{matrix}\right.\)
3) ĐKXĐ: \(x-1>0\Leftrightarrow x>1\)
4) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)
5) ĐKXĐ: \(x+2< 0\Leftrightarrow x< -2\)
6) ĐKXĐ: \(2a-1>0\Leftrightarrow a>\dfrac{1}{2}\)
Tìm điều kiện xác định
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
a: ĐKXĐ: \(x\in R\)
b: ĐKXĐ: \(x\in R\)
Tìm điều kiện để các biểu thức sau xác định
a)\(\sqrt{x+1}-\dfrac{1}{2}\)
b)\(2.\sqrt{1-2x}-\dfrac{\sqrt{3}-1}{4}\)
c)\(\sqrt{x+1}-\sqrt{x-2}\)
d)\(\sqrt{2-3x}-\sqrt{1-2x}\)
e)\(2.\sqrt{\sqrt{3}-2x}+\dfrac{1}{x-1}\)
f)\(\dfrac{1}{2}.\sqrt{x-\dfrac{\sqrt{3}}{2}}-\dfrac{1}{\sqrt{x}-1}\)
g)\(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+2}\)
h)\(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x^2+2}}\)
a, \(x+1\ge0\Leftrightarrow x\ge-1\)
b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)
c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)
d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)
e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)
f, \(\left\{{}\begin{matrix}x-\dfrac{\sqrt{3}}{2}\ge0\\x\ge0\\\sqrt{x}-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{\sqrt{3}}{2}\\x\ge0\\x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\)
g, \(\left\{{}\begin{matrix}\sqrt{x}-1\ne0\\\sqrt{x}+2\ne0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
tìm khoảng đồng biến nghịch biến
a) \(y=\sqrt{x^2+2x+3}\)
b) \(y=\sqrt{4-x^2}\)
c) \(y=\dfrac{x^2-6x+10}{x-3}\)
d) \(y=\sqrt{-x+2x}\)
e) \(y=\sqrt{4+5x^2}\)