Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Phạm Phương
Xem chi tiết
Minh Nguyễn
Xem chi tiết
Nguyễn Linh Chi
26 tháng 3 2019 lúc 17:06

\(A=x^2-4xy+4y^2+\frac{x}{2}+\frac{2}{x}+3=\left(x-2y\right)^2+\left(\frac{x}{2}+\frac{2}{x}\right)+3\)

\(\left(x-2y\right)^2\ge0\)

\(\frac{x}{2}+\frac{2}{x}\ge2\sqrt{\frac{x}{2}.\frac{2}{x}}=2\)

\(A\ge0+2+3=5\)

Giá trị nhỏ nhất của A bằng 5 

"=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2y=0\\\frac{x}{2}=\frac{2}{x}\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x dương

Trần Hà
Xem chi tiết
Trần Thị Loan
21 tháng 7 2015 lúc 12:27

A = [(x2 - 10xy + 25y2) + 2.(x - 5y).7 + 49 ] + (y2 - 6y + 9) + 1

= [(x -5y)2 + 2.(x - 5y) + 72] + (y - 3)2 + 1 = (x - 5y + 7)2 + (y - 3)2 + 1 \(\ge\) 0 + 0 + 1 = 1

=> GTNN của A bằng 1 khi x - 5y + 7 = 0 và y - 3 = 0 

=> y = 3 và x = 8

B = (x+ xy + \(\frac{y^2}{4}\)) - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + \(\frac{9}{4}\) + \(\frac{3y^2}{4}\) - \(\frac{3y}{2}\) + \(\frac{8023}{4}\)=[ (x + \(\frac{y}{2}\))2  - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + (\(\frac{3}{2}\))2 ] + 3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\)

= (x + \(\frac{y}{2}\) - \(\frac{3}{2}\) )2 +   3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\) \(\ge\) 0 + 0 + \(\frac{7975}{4}\) = \(\frac{7975}{4}\)

=> GTNN của B = \(\frac{7975}{4}\) khi  x + \(\frac{y}{2}\) - \(\frac{3}{2}\) = 0 và \(\frac{y}{2}\)  - 2 = 0 

=> y = 4 và x = -1/2 

Nguyễn Đình Nam
Xem chi tiết
Lê Quỳnh Mai
Xem chi tiết
NGUYEN HUYEN TRANG
17 tháng 7 2015 lúc 17:06

=(x2-10xy+25y2)+(y2-6y+9)+14(x-5y)+49+1=[(x-5y)2+14(x-5y)+49]+(y-3)2+1=(x-5y+7)2+(y-3)2+1>=1

min=1khi y=3;x=8

Hồ Hữu Duyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2022 lúc 14:58

\(C=\left(x+2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-2

ILoveMath
1 tháng 1 2022 lúc 15:06

\(C=x^2+4x+7=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-2

Vậy \(C_{min}=3\Leftrightarrow x=-2\)

\(D=x^2+6x+15=\left(x^2+6x+9\right)+6=\left(x+3\right)^2+6\ge6\)

Dấu '=' xảy ra khi x=-3

Vậy\(D_{min}=6\Leftrightarrow x=-3\)

Khánh Anh
Xem chi tiết
Cường Ngô
19 tháng 10 2019 lúc 18:38

pâppapapapapapakgfvergyeurfndsghohdgrkejggidgodgniirh3246457934jjkxvxkvsefsvfdscvxvf

Khách vãng lai đã xóa
AKA3
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 8 2017 lúc 8:45

Ta có : x2 + 8xy + 4y2

= x2 + 2.x.2y + (2y)2

= (x + 2y)2

Mà ;  (x + 2y)\(\ge0\forall x\)

Nên : GTNN của biểu thức là 0 

Bùi Đức Anh
14 tháng 8 2017 lúc 12:52

Ta có \(x^2+8xy+4y^2\)

=\(x^2+2x2y+\left(2y\right)^2\)

=\(\left(x+2y\right)^2\)

Mà \(\left(x+2y\right)^2\ge0\forall x\)

Nên GTNN của biểu thức là 0

Bảo Bảo Thiên
Xem chi tiết
Ahwi
13 tháng 10 2019 lúc 19:21

đề như vậy đúng không ạ

\(Q=-\frac{15}{3+\sqrt{6x-x^2-5}}.\)

ta xét \(6x-x^2-5\)

\(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-2\cdot3x+9-4\right)\)

\(=\left[\left(x-3\right)^2-4\right]\)

\(=-\left(x-3\right)^2+4\)

có \(-\left(x-3\right)^2+4\le4\)

\(\Rightarrow\sqrt{-\left(x-3\right)^2+4}\le\sqrt{4}\)

\(\Rightarrow0\le\sqrt{-\left(x-3\right)^2+4}\le2\)

có \(3+\sqrt{6x-x^2-5}\)

\(\Rightarrow3\le3+\sqrt{-\left(x-3\right)^2+4}\le5\)

\(\Rightarrow-5\le-\frac{15}{3+\sqrt{6x-x^2-5}}\le3\)

=> GTNN của Q là -3

=> GTLN của Q là -5 

với \(x-3=0;x=3\)