Cho tam giác ABC nhọn, các đường cao AH, BD, CE đồng quy tại F ( H thuộc BC, D thuộc AC, E thuộc AB). CMR:
a. Tam giác ABC và tam giác ADE đồng dạng
b.F là giao điểm của của ba đường phân giác trong của tam giác HDE
Cho tam giác ABC vuông tại A, AB = 30cm, AC = 40cm, đường cao AH (H thuộc BC), BD là tia phân giác của góc ABC (D thuộc AC), gọi I là giao điểm của AH và BD.
a) Chứng minh: Tam giác ABC đồng dạng với tam giác HBA
b) Tính độ dài AH
\(a.\) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{B}chung.\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)
\(b.\) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=30^2+40^2=2500.\\ \Rightarrow BC=50\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại A, đường cao AH:
\(AH.BC=AB.AC\) (Hệ thức lượng).
\(\Rightarrow AH.50=30.40.\\ \Rightarrow AH=24\left(cm\right).\)
cho tam giác ABC vuông tại A có AB= 3 cm : AC=4cm vẽ đường cao AH(AH thuộc BC)
a) CM tam giác ABC đồng dạng với tam giác HAC
b)tính BC,AH
c)BD là tia phân giác của B(D thuuocj AC),E là giao điểm của AH và BD CM BD.HE=BE.AD
CM AE=AD
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc EBH
góc ADE=90 độ-góc ABD
góc EBH=góc ABD
=>góc AED=góc ADE
=>AE=AD
Trong tam giác nhọn ABC, cho H là giao điểm của hai đường cao CE và BD (E thuộc AB,D thuộc AC). Một đường tròn đường kính DE cắt AB tại F và AC tại G. Gọi K là giao điểm của FG và AH. Cho BC = 25, BD=20, BE =7. Tính chiều dài đoạn AK.
Trong tam giác nhọn ABC, cho H là giao điểm của hai đường cao CE và BD (E thuộc AB,D thuộc AC). Một đường tròn đường kính DE cắt AB tại F và AC tại G. Gọi K là giao điểm của FG và AH. Cho BC = 25, BD=20, BE =7. Tính chiều dài đoạn AK.
cho tam giác nhọn ABC ó 2 đường cao BD và CE ( D thuộc AC ; E thuộc AB)
a) cm tam giác ABD đồng dạng với tam giác ACE
b) tam giác ADE đồng dạng với tam giác ABC
Cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao (H thuộc cạnh BC).
a, Chứng minh: Tam giác ABC đồng dạng với tam giác HAC và
AC2= BC.HC
b, Gọi CD là tia phân giác góc ACB (D thuộc cạnh AB), E là giao điểm của AH và CD. Chứng minh: AE.AD=HE.BD
a: Xet ΔABC vuông tại A và ΔHAC vuông tạiH có
góc ACB chung
=>ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
b: AE/HE=CA/CH
BD/AD=CB/CA
mà CA/CH=CB/CA
nên AE/HE=BD/AD
=>AE*AD=HE*BD
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF với D thuộc BC, E thuộc AC, F thuộc AB, Gọi H là trực tâm của tam giác ABC. Chững minh rằng tam giác ABD đồng dạng với tam giác CHD
Xét ΔABD vuông tại D và ΔCHD vuông tại D có
góc BAD=góc HCD
=>ΔABD đồng dạng vớiΔCHD
cho tam giác ABC vuông tại A, AB=3cm, AC=4 cm, đường cao AH, BD là phân giác của góc ABC (D thuộc AC). Gọi E là giao điểm của AH và BD a) chứng minh tam giác ABC đồng dạng với tam giác HAC b) tính AH c) chứng minh AD = AE
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạg với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc ADE=90 độ-góc ABD
góc AED=góc BEH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADE=góc AED
=>AD=AE
cho tam giác ABC vuông tại A, AB=3cm, AC=4 cm, đường cao AH, BD là phân giác của góc ABC (D thuộc AC). Gọi E là giao điểm của AH và BD
a) chứng minh tam giác ABC đồng dạng với tam giác HAC
b) tính AH
c) chứng minh AD = AE
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc DBC
góc ADE=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AED=góc ADE
=>AD=AE