Xét ΔABD vuông tại D và ΔCHD vuông tại D có
góc BAD=góc HCD
=>ΔABD đồng dạng vớiΔCHD
Xét ΔABD vuông tại D và ΔCHD vuông tại D có
góc BAD=góc HCD
=>ΔABD đồng dạng vớiΔCHD
cho tam ABC nhọn với AB<AC gọi D là điểm thuộc BC sao cho AD là phân giác BAC đường thẳng quaC song song với AD cắt trung trực của AC tại E đường thẳngqua B song song với AD cắt trung trực của AB tại F
a,cm tam giác ABF đồng dạng với tam giácACE
b, chứng minh các đường thẳng BE,CF,AD đồng quy
cho tam giác ABC nhọn ( AB<AC) vẽ ba đường cao AD , BE , CF cắt nhau tại H a) xét tam giác ADB đồng dạng với tam giác CFB và BF.BA=BD.BC
b) chững minh rằng tam giác BFD đòng dạng với tam giác BCA
c) qua A vẽ đường thẳng xy song song với BC. tia DF cắt đường thẳng xy tại M. gọi I là giao điểm của MC và AD . chứng minh rằng EI // BC
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC).Biết AB =6cm,Bc=10cm
a,chứng minh rằng tam giác HBA đồng dạng vs tam giác ABC
b,Tính AC,AH,HB
c,I và K lần lượt là hình chiếu của điểmH lên AB, AC. CHứng minh rằng AI .AB=AK.AC
d,Vẽ phân giác của tam giác AD của tam giác ABC ( D thuộc BC).Đường phân giác DE của tam giác ABD(E thuộc AB),đường phân giác DF của tam giác ADC(F thuộc AC) chứng minh rằng EA/EB*DB/DC*FC/FA=1
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF với H là trực tâm. Chứng minh tam giác AHE đồng dạng tam giác BHD; Chứng minh HA . HD = HB . HE
Cho tam giác ABC vuông tại A (AB<AC) vẽ đường cao AH (H thuộc BC)
a) Chứng minh tam giác ACH đồng dạng với tam giác BCA, từ đó suy ra AH×BC=AB×AC
b) Gọi K,I lần lượt là trung điểm HC và AH (K thuộc HC, I thuộc AH). Chứng minh tam giác HIK đồng dạng với tam giác ABC.
c) Vẽ HE,HF lần lượt vuông góc với AB,AC (E thuộc AB, F thuộc AC).
d) Cho BA=3cm, BC=5cm. Tính AE.
Cho tam giác ABC có ba góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC, E thuộc AB)
a) Chứng minh rằng tam giác BHE đồng dạng với tam giác CHD
b) Chứng minh AB.AE = AC.AD
c) Chứng minh góc AED = góc ACB
Bài: Cho tam giác ABC nhọn với các đường cao AD, BE (D thuộc BC; E thuộc AC). Chứng minh tam giác DEC đồng dạng với tam giác ABC
- Bài này hơi khó, giúp mình nhé, cám ơn !
Cho tam giác ABC đều. M là điểm bất kì thuộc BC,E và F theo thứ tự là hình chiếu của M trên AB và AC.
a.Chứng minh tam giác EBM đồng dạng với tam giác FCM
b.Vẽ đường cao AD của tam giác ABC, gọi I là trung điểm của AM.Chứng minh góc IED bằng góc IDE
c.Chứng minh: Tứ giác DEIF là hình thoi
d.Gọi H là trực tâm của tam giác ABC. Chứng minh ID, EF, MH đồng quy