Xác định \(\left(P\right)\) : \(y=ax^2+bx+c\) biết đỉnh \(I\left(-1;5\right)\) và \(\left(P\right)\) đi qua \(A\left(1;1\right)\)
Xác định a, b, c biết parabol \(y=ax^2+bx+c\) đi qua điểm \(A\left(8;0\right)\) và có đỉnh là \(I\left(6;-12\right)\)
Hàm số đi qua \(A\left(8;0\right)\) nên: \(a.8^2+8b+c=0\)\(\Leftrightarrow64a+8b+c=0\).
Hàm số có đỉnh là: \(I\left(6;-12\right)\) nên: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=6\\6^2.a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}12a+b=0\\36a+6b+c=-12\end{matrix}\right.\).
Vậy ta có hệ: \(\left\{{}\begin{matrix}64a+8b+c=0\\-b=12a\\36a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-36\\c=96\end{matrix}\right.\).
Vậy : \(y=-3x^2-36x+96\).
Xác định a, b, c biết parabol \(y=ax^2+bx+c\)
a. Đi qua 3 điểm \(A\left(0;-1\right);B\left(1;-1\right);C\left(-1;1\right)\)
b. Có đỉnh \(I\left(1;4\right)\) và đi qua điểm \(D\left(3;0\right)\)
Cho hàm số \(y=f\left(x\right)=ax^2+bx+c\)
Xác định các hệ số \(a,b,c\) biết \(f\left(0\right)=1\),\(f\left(1\right)=2\),\(f\left(2\right)=4\)
Giúp mình với :3?
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
Xác định parabol (P) biết:
a)\(\left(P\right):y=ãx^2+bx+c\)đi qua các điểm A( 1; 1) , B( -1; -3) , O( 0; 0)
b) \(\left(P\right):y=x^2+bx+c\)đi điểm A( 1; 0) và đỉnh I có tung độ bằng -1
Xác định \(\left(P\right):y=ax^2+bx+c\left(a\ne0\right)\)
biết P đi qua M(4;3), cắt Ox tại N(3;0) và P sao cho diện tích tam giác INP = 1 với xp < 3. (Gọi I là đỉnh của parabol)Do (P) đi qua \(M\left(4;3\right)\Rightarrow16a+4b+c=3\)
Do (P) cắt Ox tại \(N\left(3;0\right)\Rightarrow9a+3b+c=0\)
\(\Rightarrow7a+b=3\Rightarrow b=3-7a\)
\(9a+3\left(3-7a\right)+c=0\Rightarrow c=12a-9\)
Phương trình hoành độ giao điểm (P) và Ox: \(ax^2+bx+c=0\)
\(\Delta=b^2-4ac=\left(3-7a\right)^2-4a\left(12a-9\right)=\left(a-3\right)^2\)
Do \(\left\{{}\begin{matrix}x_P< x_I< x_N< x_M\\y_N< y_M\end{matrix}\right.\) \(\Rightarrow\) hàm \(y=ax^2+bx+c\) đồng biến trên \(\left(-\frac{b}{2a};+\infty\right)\)
\(\Rightarrow a>0\)
\(\Rightarrow x_N=\frac{-b+\left|a-3\right|}{2a}=\frac{7a-3+\left|a-3\right|}{2a}=3\)
\(\Rightarrow\left|a-3\right|=3-a\Rightarrow0< a< 3\)
\(\Rightarrow S_{INP}=\frac{1}{2}\left(x_N-x_P\right).\left|\frac{-\Delta}{4a}\right|=\frac{1}{2}\frac{\sqrt{\Delta}}{a}.\frac{\Delta}{4a}=1\)
\(\Leftrightarrow\left(3-a\right)\left(a-3\right)^2=8a^2\)
\(\Leftrightarrow a^3-a^2+27a-27=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+27\right)=0\Rightarrow a=1\)
\(\Rightarrow b=-4\) ; \(c=3\)
\(\left(P\right):y=x^2-4x+3\)
cho đa thức \(f\left(x\right)=ax^2+bx+c\)
a) xác định hệ số a,b,c biết \(f\left(0\right)=1;f\left(1\right)=0;f\left(-1\right)=10\)
b) tìm nghiệm của đa thức vừa xác định
Ta có: f(0)=1
<=> ax2 +bx+c=1
<=> c=1
f(1)=0
<=>ax2 +bx+c=0
<=> a+b+c=0
mà c=1
=>a+b=-1(1)
f(-1)=10
<=> ax2 +bx +c=10
<=>a-b+c=10
mà c=1
=>a-b=9(2)
Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9
<=> 2b=-10
<=> b=-5
=>a=4
Vậy a=4,b=-5,c=1
Xác định phương trình của Parabol (P) y = ax\(^2\)+ bx + c biết rằng (P) có đỉnh I ( 1 ; 4 )
Đề bài thiếu, không thể xác định chính xác (P) khi chỉ biết đỉnh
Xác định parabol \(y = a{x^2} + bx + 4\) trong mỗi trường hợp sau:
a) Đi qua điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\)
b) Có đỉnh là \(I\left( { - 3; - 5} \right)\)
a) Thay tọa độ điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\) ta được:
\(\begin{array}{l}\left\{ \begin{array}{l}a{.1^2} + b.1 + 4 = 12\\a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4 = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a + b = 8\\9a - 3b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 6\end{array} \right.\end{array}\)
Vậy parabol là \(y = 2{x^2} + 6x + 4\)
b) Hoành độ đỉnh của parabol là \(x_I = \frac{{ - b}}{{2a}}\)
Suy ra \(x_I = \frac{{ - b}}{{2a}} = - 3 \Leftrightarrow b = 6a\) (1)
Thay tọa độ điểm I vào ta được:
\(\begin{array}{l} - 5 = a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4\\ \Leftrightarrow 9a - 3b = - 9\\ \Leftrightarrow 3a - b = - 3\left( 2 \right)\end{array}\)
Từ (1) và (2) ta được hệ
\(\begin{array}{l}\left\{ \begin{array}{l}b = 6a\\3a - b = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\3a - 6a = - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\a = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\a = 1\end{array} \right.\end{array}\)
Vậy parabol là \(y = {x^2} + 6x + 4\).
câu 1: xác định hàm số bậc hai y = \(2x^2\)+ bx +c , biết rằng đồ thị của nó có đỉnh là I ( -1 ; 0)
câu 2 : xác định phương trình (P) y=\(ax^2\)+ bx+c đi qua ba điểm A ( 0:-1) B ( 1:-1) C ( -1:1)?
Câu 1:
Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)
Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix}
-1=a.0^2+b.0+c\\
-1=a.1^2+b.1+c\\
1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
c=-1\\
a+b+c=-1\\
a-b+c=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)