Những câu hỏi liên quan
Cù Nhật Hoàng
Xem chi tiết
Trần Trọng Tuấn
11 tháng 7 2020 lúc 21:23

hgggggg

Khách vãng lai đã xóa
Kudo Shinichi
Xem chi tiết
Thắng Nguyễn
2 tháng 7 2016 lúc 13:25

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

Nguyễn Xuân Sáng
2 tháng 7 2016 lúc 19:38

- Ôi má ơi, má patient dử dậy :)

Le Van Hung
Xem chi tiết
Vô Danh Tiểu Tốt
Xem chi tiết
Trần Phúc Khang
22 tháng 3 2020 lúc 19:16

Ta có: \(4b\sqrt{c}-c\sqrt{a}=\sqrt{c}\left(4b-\sqrt{ac}\right)>0\)( do \(1< a,b,c< 2\))

Tương tự => Các MS dương

\(VT=\frac{ba}{4b\sqrt{ac}-ca}+\frac{cb}{4c\sqrt{ba}-ab}+\frac{ac}{4a\sqrt{bc}-bc}\)

Áp dụng BĐT cosi schawr ta có

\(VT\ge\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}{4b\sqrt{ac}+4c\sqrt{ab}+4a\sqrt{bc}-ab-bc-ac}\)

Áp dụng cosi ta có \(2b\sqrt{ac}=2\sqrt{ab}.\sqrt{ac}\le ab+ac\);\(2c\sqrt{ab}\le ac+bc\);\(2a\sqrt{bc}\le ab+ac\)

=> \(VT\ge\frac{\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)^2}{ab+bc+ac+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}}=\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}=1\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c

Khách vãng lai đã xóa
TXT Channel Funfun
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 11 2019 lúc 11:32

\(P=\sum\frac{a}{\sqrt{\left(2a\right)^2+\left(b+c\right)^2}}\le\sqrt{2}\sum\frac{a}{2a+b+c}=\sqrt{2}\sum a\left(\frac{1}{a+b+a+c}\right)\le\frac{\sqrt{2}}{4}\sum\left(\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3\sqrt{2}}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Bi Bi
Xem chi tiết
tthnew
8 tháng 11 2019 lúc 19:10

Thôi giải lại câu 1:v (ý tưởng dồn biến là quá trâu bò! Bên AoPS em mới phát hiện ra có một cách bằng Cauchy-Schwarz quá hay!)

\(BĐT\Leftrightarrow\Sigma_{cyc}\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{9}{2}\)(*)

BĐT này đúng theo Cauchy-Schwarz: \(VT_{\text{(*)}}\le\Sigma_{cyc}\left(\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)=\frac{9}{2}\)

Ta có đpcm.

Equality holds when a = b = c = 1 (Đẳng thức xảy ra khi a = b =c = 1)

Khách vãng lai đã xóa
tth_new
8 tháng 11 2019 lúc 9:20

1/Đặt \(VT=f\left(a;b;c\right)\)\(0< t=\frac{a+b}{2}\)

Ta có: \(f\left(a;b;c\right)-f\left(t;t;c\right)=\frac{1}{4a^2+b^2+c^2}+\frac{1}{4b^2+a^2+c^2}-\frac{2}{5t^2+c^2}+\frac{1}{a^2+b^2+4c^2}-\frac{1}{2t^2+4c^2}\)

\(=\frac{5t^2-4a^2-b^2}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)}+\frac{5t^2-4b^2-a^2}{\left(5t^2+c^2\right)\left(4b^2+a^2+c^2\right)}+\frac{2t^2-a^2-b^2}{\left(a^2+b^2+4c^2\right)\left(2t^2+4c^2\right)}\)

\(=-\frac{1}{4}\left(a-b\right)\left[\frac{\left(11a+b\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{\left(a+11b\right)}{\left(5t^2+c^2\right)\left(4b^2+a^2+c^2\right)}\right]+\frac{2t^2-a^2-b^2}{\left(a^2+b^2+4c^2\right)\left(2t^2+4c^2\right)}\)

Xét cái ngoặc to: \(\frac{\left(11a+b\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{\left(a+11b\right)}{\left(5t^2+c^2\right)\left(4b^2+a^2+c^2\right)}\)

\(=\frac{\left(11a+b\right)\left(4b^2+a^2+c^2\right)-\left(a+11b\right)\left(4a^2+b^2+c^2\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(4b^2+a^2+c^2\right)}\)

\(=\frac{\left(a-b\right)\left(7a^2-36ab+7b^2+10c^2\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(4b^2+a^2+c^2\right)}\)

Từ đó: f(a;b;c) -f(t;t;c)

\(=-\frac{\frac{1}{4}\left(a-b\right)^2\left(7a^2-36ab+7b^2+10c^2\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(4b^2+a^2+c^2\right)}+\frac{-\frac{1}{2}\left(a-b\right)^2}{\left(a^2+b^2+4c^2\right)\left(2t^2+4c^2\right)}\)

\(=-\frac{1}{4}\left(a-b\right)^2\left[\frac{\left(7a^2-36ab+7b^2+10c^2\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(4b^2+a^2+c^2\right)}+\frac{2}{\left(a^2+b^2+4c^2\right)\left(2t^2+4c^2\right)}\right]\le0\)

Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=f\left(t;t;3-2t\right)\)

\(=\frac{-9\left(t-1\right)^4}{2\left(3t^2-8t+6\right)\left(3t^2-4t+3\right)}+\frac{1}{2}\le\frac{1}{2}\)

Ta có đpcm.

Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Nguyễn Thiều Công Thành
18 tháng 7 2017 lúc 21:07

đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)

\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)

xét hiệu:

1-4(a2b2+b2c2+c2a2)-a2-b2-c2

=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)

=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)

ta có:

\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)

\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)

\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)

\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

=>đpcm

dấu"=" xảy ra khi 1 số=1;2 số còn lại =0

Thuyết Dương
Xem chi tiết
Rồng Đom Đóm
22 tháng 5 2019 lúc 20:08

Ta có:\(\sqrt{4a+3b+2}\le\frac{9+4a+3b+2}{6}=\frac{4a+3b+11}{6}\)

\(\Rightarrow\sum\frac{a^2}{\sqrt{4a+3b+2}}\ge6.\sum\frac{a^2}{4a+3b+11}\)

Lại có:\(6.\sum\frac{a^2}{4a+3b+11}\ge6.\frac{\left(a+b+c\right)^2}{7\left(a+b+c\right)+33}=\frac{54}{54}=1\)

\(\Rightarrow\sum\frac{a^2}{\sqrt{4a+3b+2}}\ge1\)

"="<=>x=y=z=1

Nguyễn Việt Lâm
22 tháng 5 2019 lúc 20:05

\(VT\ge\frac{\left(a+b+c\right)^2}{\sqrt{4a+3b+2}+\sqrt{4b+3c+2}+\sqrt{4c+3a+2}}\ge\frac{\left(a+b+c\right)^2}{\sqrt{\left(1+1+1\right)\left(4a+3b+2+4b+3c+2+4c+3a+2\right)}}\)

\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{\sqrt{3\left(7\left(a+b+c\right)+6\right)}}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Baek Hyun
Xem chi tiết