cho hpt : \(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\\m^2x+y=m^2-3m\end{matrix}\right.\)
tìm m thuộc Z để hpt có nghiệm nguyên
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
cho hpt \(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\\m^2x+y=m^2-3m\end{matrix}\right.\)
tìm m ∈ Z để hpt có ngh nguyên
Cho hpt \(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
a) Tìm m để hpt có nghiệm duy nhất (x,y) và tìm nghiệm (x,y) đó
b) Với (x,y) là nghiệm duy nhất
1. Tìm đẳng thức liên hệ giữa x,y không phụ thuộc vào m
2. Tìm m để \(x^2+y^2\) đạt GTNN
3. Tìm m để \(xy\) đạt GTLN
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
1. Cho hpt \(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\)
2. Cho hpt \(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)
Với giá trị nào của m thì hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x< 1\\y< 6\end{matrix}\right.\)
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm \(\left(x_0,y_0\right)\) t/m: \(x_0^2+y_0^2=9m\)
giúp mk vs mk cần gấp
Cho hpt \(\left\{{}\begin{matrix}3x-2y=2m^2-3\\x-y=3\end{matrix}\right.\)
Tìm các giá trị m nguyên để hpt có nghiệm (x;y) t/m \(x^2-y^2=-15\)
Cho hpt \(\left\{{}\begin{matrix}x-y=4m+8\\x-3y=6-2m^2\end{matrix}\right.\)
Tìm m nguyên dương để hpt có nghiệm (x;y) t/m \(\sqrt{x}+\sqrt{y}=8\)
Cho hpt \(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m \(x^2+y^2=10\)
\(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y=2m+4\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y-x+2y=2m+4-3m-4\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=-m\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-\dfrac{m}{3}-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-2y=\dfrac{10}{3}m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\y=\dfrac{-5}{3}m-2\end{matrix}\right.\)
Để \(x^2+y^2=10\)
\(\Leftrightarrow\left(\dfrac{-m}{3}\right)^2+\left(\dfrac{-5x}{3}-2\right)^2=10\)
\(\Leftrightarrow\dfrac{m^2}{9}+\dfrac{25m^2}{9}+\dfrac{20m}{3}+4=10\)
\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{20m}{3}-6=0\)
\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{60m}{9}-\dfrac{54}{9}=0\)
\(\Leftrightarrow26m^2+60m-54=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{9}{13}\end{matrix}\right.\)
Cho hệ pt:\(\left\{{}\begin{matrix}x+my=m+1\\\\mx+y=2m\end{matrix}\right.\)
1)Giải hpt khi m=2
2)Tìm m để hpt thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\\\y\ge1\end{matrix}\right.\)
thay m=2 vào HPT ta có
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
vậy ..........