Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngưu Kim

Cho hpt \(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)

Tìm m để hpt có nghiệm duy nhất (x;y) t/m \(x^2+y^2=10\)

ILoveMath
17 tháng 1 2022 lúc 19:54

\(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y=2m+4\\x-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y-x+2y=2m+4-3m-4\\x-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=-m\\x-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-\dfrac{m}{3}-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-2y=\dfrac{10}{3}m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\y=\dfrac{-5}{3}m-2\end{matrix}\right.\)

Để \(x^2+y^2=10\)

\(\Leftrightarrow\left(\dfrac{-m}{3}\right)^2+\left(\dfrac{-5x}{3}-2\right)^2=10\)

\(\Leftrightarrow\dfrac{m^2}{9}+\dfrac{25m^2}{9}+\dfrac{20m}{3}+4=10\)

\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{20m}{3}-6=0\)

\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{60m}{9}-\dfrac{54}{9}=0\)

\(\Leftrightarrow26m^2+60m-54=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{9}{13}\end{matrix}\right.\)

 


Các câu hỏi tương tự
Ngưu Kim
Xem chi tiết
Ngưu Kim
Xem chi tiết
Ngưu Kim
Xem chi tiết
Ngưu Kim
Xem chi tiết
Ngưu Kim
Xem chi tiết
Hoang Nguyen
Xem chi tiết
Lan_nhi
Xem chi tiết
vietdat vietdat
Xem chi tiết
Lục Khả Vi
Xem chi tiết