Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m \(x+y>0\)
Cho hpt \(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m \(x^2+y^2=10\)
Cho hpt \(\left\{{}\begin{matrix}x+2y=5-m\\x+y=1\end{matrix}\right.\)
Tìm m để hpt có nghiệm (x;y) t/m \(2x+y< 3-4m\)
Cho hpt \(\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\mx+y=m+1\end{matrix}\right.\)
Chứng minh với mọi m hpt có nghiệm duy nhất (x;y) t/m \(2x+y\le3\)
b1cho hpt \(\left\{{}\begin{matrix}x-y=1 \\mx-2y=1\end{matrix}\right.\)
tìm giá trị của m để hpt có no duy nhất
b2cho hpt\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
tìm số nguyên m để hpt trên có no duy nhất (x,y) thoả mãn x>0,y<0
Tìm m để HPT sau :
b,\(\left\{{}\begin{matrix}mx+y=m+1\\x+my=2\end{matrix}\right.\) vô nghiệm
c,\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.cónghiệm\left(x;y\right)thỏamãn:x>0,y< 0\)
d,\(\left\{{}\begin{matrix}mx+y=4\\x-my=1\end{matrix}\right.cónghiệm\left(x;y\right)thỏamãn:x+y=\dfrac{8}{m^2+1}\)
\(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
a) Giải hpt khi m= -3
b) Tìm m để hpt có nghiệm duy nhất (x;y) thỏa dk x+ y2 = 1
Cho hpt \(\left\{{}\begin{matrix}\left(m-1\right)x_{ }+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\) a) Giải hpt khi m= -1 b) Tìm giá trị của m để hpt trên có 1 nghiệm duy nhất ( x ; y ) thỏa mãn điều kiện x + y = 3
Cho hpt:\(\left\{{}\begin{matrix}\left(m-3\right)x+y=2\\mx+2y=8\end{matrix}\right.\)
Tìm m để nghiệm của hpt (x,y) là các số nguyên