Cho hpt \(\left\{{}\begin{matrix}m^2x+2y=m\\\left(m+1\right)x-y=1\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m x>0 và y<0
Cho hpt \(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m \(x^2+y^2=10\)
Cho hpt \(\left\{{}\begin{matrix}x-y=4m+8\\x-3y=6-2m^2\end{matrix}\right.\)
Tìm m nguyên dương để hpt có nghiệm (x;y) t/m \(\sqrt{x}+\sqrt{y}=8\)
Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m \(x+y>0\)
Cho hpt \(\left\{{}\begin{matrix}3x-2y=2m^2-3\\x-y=3\end{matrix}\right.\)
Tìm các giá trị m nguyên để hpt có nghiệm (x;y) t/m \(x^2-y^2=-15\)
Cho hpt:\(\left\{{}\begin{matrix}\left(m-3\right)x+y=2\\mx+2y=8\end{matrix}\right.\)
Tìm m để nghiệm của hpt (x,y) là các số nguyên
Cho hpt \(\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\mx+y=m+1\end{matrix}\right.\)
Chứng minh với mọi m hpt có nghiệm duy nhất (x;y) t/m \(2x+y\le3\)
Cho hệ pt:\(\left\{{}\begin{matrix}x+my=m+1\\\\mx+y=2m\end{matrix}\right.\)
1)Giải hpt khi m=2
2)Tìm m để hpt thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\\\y\ge1\end{matrix}\right.\)
Tìm m để HPT sau :
b,\(\left\{{}\begin{matrix}mx+y=m+1\\x+my=2\end{matrix}\right.\) vô nghiệm
c,\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.cónghiệm\left(x;y\right)thỏamãn:x>0,y< 0\)
d,\(\left\{{}\begin{matrix}mx+y=4\\x-my=1\end{matrix}\right.cónghiệm\left(x;y\right)thỏamãn:x+y=\dfrac{8}{m^2+1}\)