1. Cho hpt \(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\)
2. Cho hpt \(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)
Với giá trị nào của m thì hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x< 1\\y< 6\end{matrix}\right.\)
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)