Giải PT sau :\(2\left(x^2+2\right)=3\left(\sqrt{x^3+8}+2x\right)\)
Giải PT sau :\(2\left(x^2+2\right)=3\left(\sqrt{x^2+8}+2x\right)\)
Mk nghĩ đề là như này : \(2\left(x^2+2\right)=3\left(\sqrt{x^3+8}+2x\right)\)
Giải PT sau:\(2\left(x^2+2\right)=3\left(\sqrt{x^3+8}+2x\right)\)
fix lai chut...
...
Ta có : \(a=2b\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)
\(\Leftrightarrow x^2-2x+4=4x+8\)
\(\Leftrightarrow x^2-6x-4=0\)
\(\Delta=6^2-4\cdot\left(-4\right)=52\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{6+\sqrt{52}}{2}=3+\sqrt{13}\\x=\frac{6-\sqrt{52}}{2}=3-\sqrt{13}\end{matrix}\right.\)
Vậy....
ĐK: \(x\ge-2\)
\(2\left(x^2+2\right)=3\left(\sqrt{x^3+8}+2x\right)\)
\(\Leftrightarrow2x^2+4=3\sqrt{x^3+8}+6x\)
\(\Leftrightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow2\left(x^2-3x+2\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x+4}=a\\\sqrt{x+2}=b\end{matrix}\right.\)( \(a,b\ge0\) )
Ta có : \(a^2-b^2=x^2-2x+4-x-2=x^2-3x+2\)
\(pt\Leftrightarrow2\left(a^2-b^2\right)=3ab\)
\(\Leftrightarrow2a^2-3ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\left(chon\right)\\2a=-b\left(loai\right)\end{matrix}\right.\)
Ta có \(a=2b\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)
\(\Leftrightarrow x^2-4x+4=4x+8\)
\(\Leftrightarrow x^2-8x-4=0\)
\(\Delta=8^2-4\cdot\left(-4\right)=80\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{8+\sqrt{80}}{2}\\x=\frac{8-\sqrt{80}}{2}\end{matrix}\right.\)( thỏa )
Vậy...
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
Giải PT: \(2\left(x^2+2\right)=3\left(\sqrt{x^3+8}+2x\right)\)
giải pt \(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt \(\frac{x^2+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
\(\frac{\left(x+4\right)\left(x-2\right)}{x^2-2x+3}=\left(x+1\right)\frac{x+2-4}{\sqrt{x+2}+2}\)
\(\left(x-2\right)\left(\frac{x+4}{x^2-2x+3}-\frac{x+1}{\sqrt{x+2}+2}\right)=0\)
+ x=2
+ chiu kho lam cai con lai
giải hệ pt sau
\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{2x+y+1}+2\sqrt[3]{7x+12y+8}=2xy+y+5\end{matrix}\right.\)
Xét \(pt\left(1\right)\) dễ dàng suy ra \(x+y\ge0\)
\(VT=\sqrt{\left(x-y\right)^2+\left(2x+y\right)^2}+\sqrt{\left(x-y\right)^2+\left(2y+x\right)^2}\)
\(\ge\left|2x+y\right|+\left|2y+x\right|\ge3\left(x+y\right)\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y\\x,y\ge0\end{matrix}\right.\)
Thay vào \(pt\left(2\right)\) ta được:
\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)
\(\Leftrightarrow\left[\sqrt{3x+1}-\left(x+1\right)\right]+2\left[\sqrt[3]{19x+8}-\left(x+2\right)\right]=2x^2-2x\)
\(\Leftrightarrow\left(x-x^2\right)\left[\dfrac{1}{\sqrt{3x+1}+x+1}+2\cdot\dfrac{x+7}{\sqrt[3]{\left(19x+8\right)^2}+\left(x+2\right)\sqrt[3]{19x+8}+\left(x+2\right)^2}+2\right]=0\)
Do \(x;y\ge0\) nên pt trong ngoặc luôn dương
\(\Rightarrow x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Mà \(x=y\)\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\) là nghiệm của hpt
thanks b đã chỉ giúp mình.tại đánh máy nên mình ko để ý^^
pt(1): 5x2+2xy+2y2>=(2x+y)2 nên \(\sqrt{5x^{2^{ }}+2xy+2y^2}\ge\:\)trị tuyệt đối 2x+y.
cmtt>\(\sqrt{2x^2+2xy+5y^2}\ge\)trị tuyệt đối x+ 2y.
>mà tt đối 2x+y cộng ttđ x+2y>= 3(x+y).
>(1)>=3(x+y).
đâu = xảy ra khi và chỉ khi x=y.
thay x=y >=0 vào (2):
\(\sqrt{3x+1}+2\sqrt[3]{19x+8}\) = 2x2+x+5.
<=>\(\left(\sqrt{3x+1}-\left(x+1\right)\right)\)+\(\left(2\sqrt[3]{19x+8}-\left(x+2\right)\right)\)= 2x2- 2x.
nhân liên hợp ta đc:
(x2-x)*(\(\dfrac{1}{\sqrt{3x+1}+x+1}+2\dfrac{x+7}{\sqrt[3]{19x+18}+\left(x+2\right)\left(\sqrt[3]{19x+18}\right)+\left(x+2\right)^2}=0\)
dễ thấy phần *>0 với mọi x,ytheo đk của (1)
>(x2 -x)=0
>x=0 hoặc x=1
>(x,y)=(0,0); (1,1).
vậy....