fix lai chut...
...
Ta có : \(a=2b\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)
\(\Leftrightarrow x^2-2x+4=4x+8\)
\(\Leftrightarrow x^2-6x-4=0\)
\(\Delta=6^2-4\cdot\left(-4\right)=52\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{6+\sqrt{52}}{2}=3+\sqrt{13}\\x=\frac{6-\sqrt{52}}{2}=3-\sqrt{13}\end{matrix}\right.\)
Vậy....
ĐK: \(x\ge-2\)
\(2\left(x^2+2\right)=3\left(\sqrt{x^3+8}+2x\right)\)
\(\Leftrightarrow2x^2+4=3\sqrt{x^3+8}+6x\)
\(\Leftrightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow2\left(x^2-3x+2\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x+4}=a\\\sqrt{x+2}=b\end{matrix}\right.\)( \(a,b\ge0\) )
Ta có : \(a^2-b^2=x^2-2x+4-x-2=x^2-3x+2\)
\(pt\Leftrightarrow2\left(a^2-b^2\right)=3ab\)
\(\Leftrightarrow2a^2-3ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\left(chon\right)\\2a=-b\left(loai\right)\end{matrix}\right.\)
Ta có \(a=2b\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)
\(\Leftrightarrow x^2-4x+4=4x+8\)
\(\Leftrightarrow x^2-8x-4=0\)
\(\Delta=8^2-4\cdot\left(-4\right)=80\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{8+\sqrt{80}}{2}\\x=\frac{8-\sqrt{80}}{2}\end{matrix}\right.\)( thỏa )
Vậy...