1.Tính: a, \(\sqrt{\left(5-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
b, B=\(\left(2-\sqrt{3}\right).\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right).\sqrt{26-15\sqrt{3}}\)
c, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
d, A=\(\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}\)
2.Giải pt:
a,\(\sqrt{x^2-3x-2}=x-2\)
b,\(5\sqrt{x-1}-\sqrt{36x-36}+\sqrt{9x-9}=\sqrt{8x+12}\)
c,\(\sqrt{x}+\sqrt{1-x}+\sqrt{x\left(1-x\right)}=1\)
Bài 1:
a: \(=\left|5-\sqrt{3}\right|-\left|\sqrt{3}-2\right|\)
\(=5-\sqrt{3}-2+\sqrt{3}=3\)
b; \(B=\dfrac{\left(2-\sqrt{3}\right)\cdot\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\cdot\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\left(2-\sqrt{3}\right)\cdot\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)
\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-6\sqrt{3}+10-9+5\sqrt{3}}{\sqrt{2}}\)
\(=\dfrac{20-18}{\sqrt{2}}=\sqrt{2}\)
c: \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3+3-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=1\)
d: \(A=\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)