\(\sqrt{25x^2-9}=2\sqrt{5x-3}\)
Giải các phương trình sau:
a) \(\sqrt{25x^2-9}-2\sqrt{5x+3}=0\)
b) \(\dfrac{\sqrt{x-3}}{\sqrt{2x+1}}=2\)
c) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)
`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`
`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\)
`b)sqrt{x-3}/sqrt{2x+1}=2`
ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)
`<=>x>=3`
`pt<=>sqrt{x-3}=2sqrt{2x+1}`
`<=>x-3=8x+4`
`<=>7x=7`
`<=>x=1(l)`
`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`
`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`
`<=>|x-1|+|x-2|=3`
`**x>=2`
`pt<=>x-1+x-2=3`
`<=>2x=6`
`<=>x=3(tm)`
`**x<=1`
`pt<=>1-x+2-x=3`
`<=>3-x=3`
`<=>x=0(tm)`
`**1<=x<=2`
`pt<=>x-1+2-x=3`
`<=>=-1=3` vô lý
Vậy `S={0,3}`
giải pt :
a,\(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25x+2}\)
b,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
c, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
Giải phương trình
a) \(\sqrt{5X-3}=\:3-X\)
b) \(\sqrt{25X^2-10X+7}=X-2\)
c) \(\sqrt{X^2-9}+\sqrt{X^2+9+6X}=0\)
câu a và câu b bình phương là ra
câu c vì mỗi dấu căn luôn luôn lớn hơn hoặc bằng 0 nên từng cái căn 1 phải bằng 0tuwf đó tính ra đc x = -3
c)\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x+3\right)^2}=0\)
Đặt căn (x+3) ra ngoài
Giải phương trình:
1. \(2\sqrt{9x-27}-\frac{1}{5}\sqrt{25x-75}-\frac{1}{7}\sqrt{49x-147}=20\)
2.\(\frac{3}{2}\sqrt{5x}+\sqrt{5x}-7=\frac{1}{2}\sqrt{5x}\)
1. ĐKXĐ: \(x\ge3\)
\(2\sqrt{9x-27}-\frac{1}{5}\sqrt{25x-75}-\frac{1}{7}\sqrt{49x-147}=20\)
⇔ \(6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
⇔ \(4\sqrt{x-3}=20\)
⇔ \(\sqrt{x-3}=5\)
⇔ \(x-3=25\)
⇔ \(x=28\left(TMĐKXĐ\right)\)
Vậy....
2. ĐKXĐ: \(x\ge0\)
\(\frac{3}{2}\sqrt{5x}+\sqrt{5x}-7=\frac{1}{2}\sqrt{5x}\)
⇔ \(\frac{3}{2}\sqrt{5x}+\sqrt{5x}-\frac{1}{2}\sqrt{5x}=7\)
⇔ \(2\sqrt{5x}=7\)
⇔ \(\sqrt{5x}=\frac{7}{2}\)
⇔ \(5x=\frac{49}{4}\)
⇔ \(x=\frac{49}{20}\left(TMĐKXĐ\right)\)
Vậy...
bài 1,giải các phương trình sau
a,\(\sqrt{5x-2}=7\)
b,\(\sqrt{9x-27}+\sqrt{25x-75}=24\)
c,\(x^2-5x+8=2\sqrt{x-2}\)
bài 2,cho A=\(\left\{\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right\}\div\dfrac{2}{\sqrt{x}+2}\)
NÊU ĐKXĐ VÀ RÚT GỌN A
bài 3,cho B=\(\left\{\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right\}\times\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\)
NÊU ĐKXĐ VÀ RÚT GỌN B
bài4,cho C=\(\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right)\times\left(1-\dfrac{3}{\sqrt{x}}\right)\)
NÊU ĐKXĐ VÀ RÚT GỌN C
Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$
PT $\Leftrightarrow 5x-2=7^2=49$
$\Leftrightarrow 5x=51$
$\Leftrightarrow x=\frac{51}{5}=10,2$
b. ĐKXĐ: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$
$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$
$\Leftrightarrow 8\sqrt{x-3}=24$
$\Leftrightarrow \sqrt{x-3}=3$
$\Leftrightarrow x-3=9$
$\Leftrightarrow x=12$ (tm)
Bài 1:
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$
$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$
$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$
$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$
Nếu $x-3=0$
$\Leftrightarrow x=3$ (tm)
Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$
$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)
$\Leftrightarrow a^3+a^2-2=0$
$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$
$\Leftrightarrow (a-1)(a^2+2a+2)=0$
Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$
$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)
Vậy pt có nghiệm duy nhất $x=3$.
Bài 2:
ĐKXĐ: $x\geq 0; x\neq 4$
\(A=\frac{\sqrt{x}(\sqrt{x}-2)-\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}+2)\sqrt{x}-2)}.\frac{\sqrt{x}+2}{2}\\ =\frac{-4\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}+2}{2}\\ =\frac{-2\sqrt{x}}{\sqrt{x}-2}=\frac{2\sqrt{x}}{2-\sqrt{x}}\)
Tìm điều kiện xác định
\(A=\sqrt{x^2-5x+6}\)
\(B=\dfrac{x}{\sqrt{7x^2-8}}\)
\(C=\sqrt{-9x^2+6x-1}-\dfrac{1}{\sqrt{x^2+x+2}}\)
\(D=\sqrt{3-x^2}-\sqrt{\dfrac{2021}{3x+2}}\)
\(E=\sqrt{\dfrac{3x^2}{2x+1}-1}\)
\(F=\sqrt{25x^2-10x+1}+\dfrac{1}{1-5x}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
giải pt
\(\sqrt{4x^2}=3\)
\(\sqrt{x^2-6x+9}=2\)
\(\sqrt{\left(2x-3\right)^2}=6\)
\(\sqrt{25x^2}=100\)
\(\sqrt{4x^2}=3\left(ĐK:4x^2\ge0\forall x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x\right)^2}=3\\ \Leftrightarrow\left|2x\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}2x=-3\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\x=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{2};\dfrac{3}{2}\right\}\)
\(\sqrt{x^2-6x+9}=2\\ \Leftrightarrow\sqrt{\left(x-3\right)^2}=2\left(ĐK:\left(x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|x-3\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+3\\x=-2-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-5\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left(\pm5\right)\)
\(\sqrt{\left(2x-3\right)^2}=6\left(ĐK:\left(2x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|2x-3\right|=6\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=3+6\\2x=-6+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4,5\left(tm\right)\\x=-1,5\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{4,5;-1,5\right\}\)
\(\sqrt{25x^2}=100\\ \sqrt{\left(5x\right)^2}=100\left(ĐK:\left(5x\right)^2\ge0\forall x\in R\right)\\\Leftrightarrow \left|5x\right|=100\\ \Leftrightarrow\left[{}\begin{matrix}5x=100\\5x=-100\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=20\left(tm\right)\\x=-20\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\pm20\right\}\)
giải phương trình
a) \(\sqrt{3x-5}=3+\sqrt{x-2}\)
b) \(\sqrt{25x^2-4}=2\sqrt{5x-2}\)
a/ Điều kiện xác định : \(x\ge2\)
\(\sqrt{3x-5}=3+\sqrt{x-2}\)
\(\Leftrightarrow\left(\sqrt{3x-5}\right)^2=\left(3+\sqrt{x-2}\right)^2\)
\(\Leftrightarrow3x-5=9+x-2+6\sqrt{x-2}\)
\(\Leftrightarrow x-6=3\sqrt{x-2}\)
\(\Leftrightarrow\left(x-6\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow x^2-12x+36=9x-18\)
\(\Leftrightarrow x^2-21x+54=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-18\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=18\end{cases}}\) (TM)
Vậy..........................................................
b/ ĐKXĐ : \(x\ge\frac{2}{5}\)
\(\sqrt{25x^2-4}=2\sqrt{5x-2}\)
\(\Leftrightarrow25x^2-4=4\left(5x-2\right)\) (bình phương hai vế )
\(\Leftrightarrow25x^2-20x+4=0\)
\(\Leftrightarrow\left(5x-2\right)^2=0\Leftrightarrow x=\frac{2}{5}\) (TM)
Vậy ................................................
Câu 2: Tìm x biết:
a. \(\sqrt{\left(2x-3\right)^2}=7\)
b. \(\sqrt{64x-121}-\sqrt{25x-50}-\sqrt{4x-1}=20\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a: \(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a, \(\sqrt{\left(2x-3\right)^2}=7\\ \Rightarrow\left|2x-3\right|=7\\ \Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)