chứng minh 10^6-5^7 chia hết cho 53
chứng minh 10^6-5^7 chia hết cho 53
Mình nghĩ đề bài phải là chia hết cho 59 chứ bạn.
Ta có:
\(10^6-5^7\)
\(=\left(2.5\right)^6-5^7\)
\(=2^6.5^6-5^7\)
\(=2^6.5^6-5^6.5\)
\(=5^6.\left(2^6-5\right)\)
\(=5^6.59\)
Vì \(59⋮59\) nên \(5^6.59⋮59\)
=> \(10^6-5^7⋮59\left(đpcm\right).\)
Chúc bạn học tốt!
Chứng minh
A) 5^5-5^4+5^3 chia hết cho 7
B) 7^6+7^5-7^4 chia hết cho 11
C) 24^54×54^24×2^10 chia het cho 72^53
a) = 53. 52- 53 .5+ 53
= 53 .( 52- 5+1)
=53. 21 mà 21 chia hết cho 7
=) 55 - 54 + 53 chia hết cho 7
b)= 74.72 + 74.7 -74
= 74( 72+ 7-1)
=74. 55 mà 55chia hết cho 11
=)7^6 + 75-74 chia hết cho 11
c)=( 2.3.4)2.27 . (2.27)2.3.4 . ( 2)2.5
= ( 6. 4) 6.9 . ( 6. 9 ) 6.4. 210
= 246. 249. 546.549 . 210
=12966 . 12964.210mà 1296 chia hết cho 72 ( vì 1296 : 72 bằng 18)
=)24^54. 54^24 + 2^10 chia hết cho 72 ^53
a)
Ta có :
106 + 57
= (2 x 5)6 + 57
= 26 x 56 + 57
= 26 x 56 + 56 x 5
= 56 x (26 + 5)
= 56 x 69
Vì 69 ⋮ 69 => 56 ⋮ 69 => 106 + 57 ⋮ 69
b)
Ta có :
220 - 217
= 217 x 23 - 217 x 1
= 217 x (23 - 1)
= 217 x 7
Vì 7 ⋮ 7 => 217 x 7 ⋮ 7 => 220 - 217 ⋮ 7
k nha bn !!!
cho C=5+52+53+54+...+520 chứng minh rằng:
a)C chia hết cho 5 b) C chia hết cho 6 c) C chia hết cho 13
\(a,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)⋮5\)
nên \(C⋮5\)
\(b,C=5+5^2+5^3+5^4\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdot\cdot\cdot+\left(5^{19}+5^{20}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdot\cdot\cdot+5^{19}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+\cdot\cdot\cdot+5^{19}\cdot6\)
\(=6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)⋮6\)
nên \(C⋮6\)
\(c,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\cdot\cdot\cdot+\left(5^{17}+5^{19}\right)+\left(5^{18}+5^{20}\right)\)
\(=5\left(1+5^2\right)+5^2\left(1+5^2\right)+\cdot\cdot\cdot+5^{17}\cdot\left(1+5^2\right)+5^{18}\left(1+5^2\right)\)
\(=5\cdot26+5^2\cdot26+\cdot\cdot\cdot+5^{17}\cdot26+5^{18}\cdot26\)
\(=26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)\)
Ta thấy: \(26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)⋮13\)
nên \(C⋮13\)
#\(Toru\)
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
Chứng minh rằng
a, 7^ 6 +7^ 5 - 7^ 4 chia hết cho 11
b, 10^9 +10^8 +10^7 chia hết cho 222
7^6+7^5-7^4=7^4*(7^2+7-2)=7^4*55=7^4*5*11 chia hết cho 11
10^9+10^8+10^7=10^7*(10^2+10+1)=10^7*111=10^6*5*222 chi hết cho 222
Chứng minh rằng :
a) 7^6+7^5-7^4 chia hết cho 11
b) 10^9+10^8+10^7 chia hết cho 222
ta có76+75+74=74x(72+7-1)
=74x55
do 55 chia hết cho 11 nên 74x55 chia hết cho 11
vậy76+75-74 chia hết cho 11
a)76+75-74
=74(72+7-1)
=74.55
Vì 55 chia hết cho 11 nên 74.55 chia hết cho 11
hay 76+75-74 chia hết ch0 11.
b)109+108+107
=107(102+10+1)
=107.111
=106.10.111
=106.1110
Vì 1110 chia hết cho 222 nên ...
...
Chứng minh rằng:
a) A = 3 + 33 + 33 + ...+ 399 chia hết cho 13
b) B = 5 + 52 + 53 + ... + 550 chia hết cho 6
Sửa câu a
a)Ta có:
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)
\(A=39+...+3^{96}.39\)
\(A=39.\left(1+...+3^{96}\right)\)
Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13
Vậy A \(⋮\) 13
_________
b)Ta có:
\(B=5+5^2+5^3+...+5^{50}\)
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)
\(B=30+5^2.30+...+5^{48}.30\)
\(B=30.\left(1+5^2+...+5^{48}\right)\)
Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6
Vậy B \(⋮\) 6
a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)
=3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13
b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)
=5x6+...+549x6=6(5+..+549)⋮6.
Bài 1: a, Chứng minh: A=21+22+23+24+...+22010 chia hết cho 3 và 7
b, Chứng minh: B=31+32+33+34+...+22010 chia hết cho 4 và 13
c, Chứng minh: C=51+52+53+54+...+52010 chia hết cho 6 và 31
d, Chứng minh: C=71+72+73+74+...+72010 chia hết cho 8 và 57
Bài 2: So sánh
a, A=20+21+22+23+...+22011 và B=22011-1
b, A=2019.2021 và B=20202
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)