giải phương trình:
Sinx - sin3x + 2sin5x = 0
Căn 3 cosx + 2sin2 ( x/2- pi/4 ) = 3
Giải pt
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(sinx-\sqrt{3}cosx=2sin5x\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
\(sinx+cosxsin2x+\sqrt{3}cos3x=2\left(cos4x-sin^3x\right)\)
\(tanx-3cotx=4\left(sinx+\sqrt{3}cosx\right)\)
1.
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)
2.
\(sinx-\sqrt{3}cosx=2sin5\text{}x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)
1.giải phương trình: \(\frac{sin3x}{cosx+1}=0\) với \(\left[2\pi;4\pi\right]\)
2.giải phương trình \(cos^2x+cosx=0\) với \(\frac{\pi}{2}< x< \frac{3\pi}{2}\)
3. gpt: \(2sin^2x-3sinx+1=0\) với \(0\le x\le\frac{\pi}{2}\)
3) 2sin^2 x - 3sinx + 1 = 0
Đặt t = sin x
(*) <=> 2t^2 - 3t + 1 = 0
<=> t = 1 (nhận) or t = 1/2 (nhận)
.Vs t = 1 => sinx = 1
<=> x = π/2 + k2π (k thuộc Z) (nhận)
.Vs t = 1/2 => sinx = 1/2
<=> sinx = sin π/6
<=> x = π/6 + k2π (k thuộc Z) (nhận)
Vậy ...
2) cos^2 x + cosx = 0
Đặt t = cosx
(*) <=> t^2 + t =0 <=> t = 0 (n) or t = -1 (n)
. Vs t = 0 => cosx = 0 <=> x = π/2 + kπ (loại)
.Vs t = -1 => cosx = -1 <=> x = π + k2π (nhận)
Vậy ...
1) (sin3x)/cosx + 1 = 0
ĐK: cosx + 1 ≠ 0 <=> cosx ≠ -1 <=> x ≠ π + k2π
<=> sin3x = 0
<=> 3x = kπ
<=> x = 1/3 kπ (k thuộc Z) (n)
Vậy ...
Giải các phương trình sau:
1. F'(x)=0 với y(x)=3x+60/x -64/x^3+5
2. F'(x)=0 với f(x)=1-sin(pi+x)+2cos((3pi+x)/2)
3. F'(x)=0 với f(x)=sin3x/3 +cosx -√3*(sinx+(cos3x/3))
4. G'(x)=0 với g(x)=sin3x -√3*cos3x +3*(cosx -√3*sinx)
1, Tìm GTLN M của hàm số y=a+b\(\sqrt{sinx}\) +c\(\sqrt{cosx}\); x\(\in\)(0;pi/4).a^2+b^2+c^2=4 2, giải pt sin3x-4sinx.cos2x=0
3,tập nghiệm của phương trình sin^2x cosx=0
4, giải pt \(\sqrt{3}\)sin2x+2sin^2x=3
5,pt 2sin^2x-5sinx.cosx-cos^2x=-2 tương đương với pt nào
6,nghiệm của pt sĩn+cosx-2sinx.cosx+1=0
7, tất cả các nghiệm của pt sin3x-cosx=0
8, số nghiệm của pt sin2x-cos2x=3sinx+cosx-2 trong khoảng(0;pi/2)
9, tìm m để pt 2sin^2x+msin2x=2m vô nghiệm
10, tổng các nghiệm của pt sin(x+pi/4)+sin(x-pi/4)=0 thuộc khoảng (0;4pi)
1.
Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?
2.
\(sin3x-4sinx.cos2x=0\)
\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)
\(\Leftrightarrow2sinx-sin3x=0\)
\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)
\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)
\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)
3.
\(sin^2x.cosx=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
4.
\(\sqrt{3}sin2x+1-cos2x=3\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)
5.
Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)
6.
\(sinx+cosx-2sinx.cosx+1=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(t+1-t^2+1=0\)
\(\Leftrightarrow-t^2+t+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
Giải phương trình sin 3 x + cos 3 x = 2 sin 5 x + cos 5 x
Giải phương trình sin 3 x + cos 3 x = 2 sin 5 x + cos 5 x .
A. x = - π 4 + k 2 π
B. x = π 4 + k π .
C. x = π 4 + k π 2
D. x = π 4 + k 2 π
giải phương trình
a) \(sinx=-\dfrac{6}{5}\)
b) \(sin3x=\dfrac{\sqrt{3}}{2}\)
c) \(sin\left(x+\dfrac{\pi}{3}\right)=sin\dfrac{3\pi}{4}\)
d) \(4sin\left(x+\dfrac{5\pi}{6}\right)=5\)
a: sin x=-6/5=-1,2
mà -1<=sin x<=1
nên \(x\in\varnothing\)
b: sin3x=căn 3/2
=>3x=pi/3+k2pi hoặc 3x=2/3pi+k2pi
=>x=pi/9+k2pi/3 hoặc x=2/9pi+k2pi/3
c: \(sin\left(x+\dfrac{pi}{3}\right)=sin\left(\dfrac{3}{4}pi\right)\)
=>x+pi/3=3/4pi+k2pi hoặc x+pi/3=1/4pi+k2pi
=>x=5/12pi+k2pi hoặc x=-1/12pi+k2pi
d: =>sin(x+5/6pi)=5/4
mà sin(x+5/6pi) thuộc [-1;1]
nên \(x\in\varnothing\)
giải các phương trình sau : a). sin 2x+sin2 x=1/2
b.2sin2 x +3 sin x cosx + cos2 x= 0
c.sin2 x/2 + sin x - 2 cos 2 x/2 = 1/2