Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Hồng Phúc
17 tháng 9 2021 lúc 22:28

a, \(y=2sin^2x-cos2x=1-2cos2x\)

Vì \(cos2x\in\left[-1;1\right]\Rightarrow y=2sin^2x-cos2x\in\left[-1;3\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=-1\\y_{max}=3\end{matrix}\right.\)

Đừng gọi tôi là Jung Hae...
Xem chi tiết
Hồng Phúc
17 tháng 9 2021 lúc 22:30

a, \(y=3-4sin^2x.cos^2x=3-sin^22x\)

Đặt \(sin2x=t\left(t\in\left[-1;1\right]\right)\).

\(\Rightarrow y=f\left(t\right)=3-t^2\)

\(\Rightarrow y_{min}=minf\left(t\right)=2\)

\(y_{max}=maxf\left(t\right)=3\)

Hồng Phúc
17 tháng 9 2021 lúc 22:33

b, \(y=f\left(t\right)=\dfrac{-2}{3t-5}\left(t\in\left[0;1\right]\right)\)

\(\Rightarrow y_{min}=minf\left(t\right)=\dfrac{2}{5}\)

\(y_{max}=maxf\left(t\right)=1\)

Thiên Yết
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:50

a/

Đặt \(x+\frac{\pi}{3}=a\Rightarrow x=a-\frac{\pi}{3}\)

Pt trở thành:

\(cos^2a+4cos\left(\frac{\pi}{6}-a+\frac{\pi}{3}\right)=4\)

\(\Leftrightarrow cos^2a+4cos\left(\frac{\pi}{2}-a\right)-4=0\)

\(\Leftrightarrow cos^2a+4sina-4=0\)

\(\Leftrightarrow1-sin^2a+4sina-4=0\)

\(\Leftrightarrow-sin^2a+4sina-3=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{3}\right)=1\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{6}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:54

b/

Đặt \(x+\frac{\pi}{6}=a\Rightarrow x=a-\frac{\pi}{6}\)

Pt trở thành:

\(5cos2a=4sin\left(\frac{5\pi}{6}-a+\frac{\pi}{6}\right)-9\)

\(\Leftrightarrow5cos2x=4sin\left(\pi-a\right)-9\)

\(\Leftrightarrow5\left(1-2sin^2a\right)=4sina-9\)

\(\Leftrightarrow10sin^2a+4sina-14=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=-\frac{7}{5}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=1\)

\(\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 20:00

c/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=...\)

Lan Gia Huy
Xem chi tiết
Mai Anh
Xem chi tiết
Hồng Phúc
29 tháng 8 2021 lúc 10:09

a, Đồ thị hàm số \(y=cosx\)\(\left(A=\left(-\dfrac{\pi}{2};0\right);B=\left(\dfrac{\pi}{2};0\right)\right)\)

Dựa vào đồ thị ta có \(\left\{{}\begin{matrix}y_{min}=0\\y_{max}=1\end{matrix}\right.\)

b, Đồ thị hàm số \(y=sinx\)\(\left(A=\left(-\dfrac{\pi}{2};-1\right);A=\left(\dfrac{\pi}{2};1\right)\right)\)

Trần MInh Hiển
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 7 2021 lúc 18:42

a.

\(\left\{{}\begin{matrix}sin\left(3x+\dfrac{\pi}{6}\right)\ne0\\cos2x\ne0\\sinx\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

b.

Do \(5+2cot^2x-sinx=4+2cot^2x+\left(1-sinx\right)>0\) nên hàm xác định khi:

\(\left\{{}\begin{matrix}sinx\ne0\\sin\left(x+\dfrac{\pi}{2}\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

Diệu Ngọc
Xem chi tiết
Akai Haruma
6 tháng 8 2021 lúc 18:41

2.

$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$

$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$

Vì: $0\leq \sin ^22x\leq 1$

$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$

Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$

 

Akai Haruma
6 tháng 8 2021 lúc 18:42

3.

$0\leq |\sin x|\leq 1$

$\Rightarrow 3\geq 3-2|\sin x|\geq 1$

Vậy $y_{\min}=1; y_{\max}=3$

Akai Haruma
6 tháng 8 2021 lúc 18:46

1.

\(y=\cos x+\cos (x-\frac{\pi}{3})=\cos x+\frac{1}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)

\(=\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)

\(y^2=(\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x)^2\leq (\cos ^2x+\sin ^2x)(\frac{9}{4}+\frac{3}{4})\)

\(\Leftrightarrow y^2\leq 3\Rightarrow -\sqrt{3}\leq y\leq \sqrt{3}\)

Vậy $y_{\min}=-\sqrt{3}; y_{max}=\sqrt{3}$

Trang Tran
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:20

\(y=1-cos2x+2sin2x+6=2sin2x-cos2x+7\)

\(y=\sqrt{5}\left(\dfrac{2}{\sqrt{5}}sin2x-\dfrac{1}{\sqrt{5}}cos2x\right)+7\)

Đặt \(\dfrac{2}{\sqrt{5}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)

\(y=\sqrt{5}sin\left(2x-a\right)+7\)

\(\Rightarrow-\sqrt{5}+7\le y\le\sqrt{5}+7\)