[(3x+2y)^3+9x^2+12xy+y^2]:(8y+12x)
Áp dụng hằng đẳng thức, tính giá trị biểu thức:
a.A=x^3-3x^2+3x+1012 tại x=11
b.B=x^3-6x^2+12x-108 tại x=12
c.C=x^3+6x^2y+12xy^2+8y^3 tại x=-2y
d.D=x^3+9x^2+27x+2027 tại x=-23
\(...=A=x^3-3x^2+3x-1+1013\)
\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)
\(...B=x^3-6x^2+12x-8-100\)
\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)
\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)
\(...D=x^3+9x^2+27x+9+2018\)
\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)
a) \(A=x^3-3x^2+3x+1012\)
\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)
\(A=\left(x-1\right)^3+1013\)
Thay x=11 vào A ta có:
\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)
b) \(B=x^3-6x^2+12x-108\)
\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)
\(B=\left(x-2\right)^3-100\)
Thay x=12 vào B ta có:
\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)
c) \(C=x^3+6x^2y+12xy^2+8y^3\)
\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)
\(C=\left(x+2y\right)^3\)
Thay x=-2y vào C ta được:
\(C=\left(-2y+2y\right)^3=0^3=0\)
d) \(D=x^3+9x^2+27x+2027\)
\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)
\(D=\left(x+3\right)^3+2000\)
Thay x=-23 vào D ta có:
\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)
Tính giá trị biểu thức:
a) [ - 5 ( x - 4 y ) 3 + 7 ( x - 4 y ) 2 ]:2(4y - x) tại x = -2; y = - 1 2 ;
b) [ ( 3 x + 2 y ) 3 + 9 x 2 + 12xy + y 2 ]:(8y + 12x) tại x = 2 3 ; y = - 1 2 .
a.(x+1)^2-25
b. 1-4x^2
c. 8-27x^3
d. 27+27x+9x^2+x^3
e. 8x^3-12x^2y+6xy^2-y^3
f. x^3+8y^3
g. x^5-3X^4+3x^3-x^2
a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
b: =(1-2x)(1+2x)
c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
d: =(x+3)^3
e: \(=\left(2x-y\right)^3\)
f: =(x+2y)(x^2-2xy+4y^2)
Tính
1(3x-5y).(3x+5y)
2(2x-3y).(4x^2+6xy+9y^2)
3(4x+3y).(16x^2-12xy+9y^2)
4)8x^3+12x^2+6x+1
5)27x^3+54x^2y+36xy^2+8y^3
Phân tích đa thức thành đa nhân tử :
\(12x-9-4x^2\)
\(x^3-6x^2y=12xy^2-8y^3\)
\(12x-9-4x^2=-\left(2x-3\right)^2\\ Sửa:x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)
Viết các biểu thức sau dưới dạng tổng của hai bình phương:
5)-12x+13-24y+9x^2+16y^2
6)a^2-4ab+5b^2-4bc+4c^2
7)5x^2+y^2+z^2+4xy-2xz
8)9x^2+25-12xy+2y^2-10y
9)13x^2+4x-12xy+4y^2+1
10)x^2+4y^2+4x-4y+5
11)4x^2-12x+y^2-4y+13
12)x^2+y^2+2y-6x+10
13)4x^2+9y^2-4x+6y+2
14)y^2+2y+5-12x+9x^2
15)x^2+26+6y+9y^2-10x
16)10-6x+12y+9x^2+4y^2
17)16x^2+5+8x-4y+y^2
18)x^2+9y^2+6x-12y
19)5+9x^2+9y^2+6y-12
20)x^2+20+9y^2+8x-12y
21)x^2+4y+4y^2+26-10x
22)4y^2+34-10x+12y+x^2
23)-10x+y^2-8y+x^2+41
24)x^2+9y^2-12y+29-10x5
25)9x^2+4y^2+4y-12x+5
26)4y^2-12x+12y+9x^2+13
27)4x^2+25-12x-8y+y^2
28)x^2+17+4y^2+8x+4y
29)4y^2+12y=25+8x+x^2
30)x^2+20+9y^2+8x-12y
MONG CAC BAN GIUP MINH VOI ,MINH CAN GAP ,CAM ON NHIEU
ai lam ho toi voi nhanh nhe !!!
\(\left(x-2y\right)^3\)bằng bao nhiêu chọn đáp an đúng nhé
\(a,x^3-3xy+3x^3y+y^3\)
\(b,x^3-6x^2y+12xy^2-8y^3\)
\(c,x^3-6x^2y+12xy^2-4y^3\)
\(d,x^3-3x^2y+12xy^2-8y^3\)
Trả lời:
Ta có: ( x - 2y )3 = x3 - 3.x2.2y + 3.x.( 2y )2 - ( 2y )3 = x3 - 6x2y + 12xy2 - 8y3 ( HĐT thứ 5 - lập phương của 1 hiệu )
=> Chọn b
chọn đáp án đúng và giải thick ra nhé
phân tích các đa thức sau thành nhân tử
a, 27x mũ 3 + 27 xmũ 2 + 9x + 1
b, x mũ 3 - 6x mũ 2 + 12x - 8
c, 8x mũ 3 + 12x mũ 2 + 6x + 1
d, 9x mũ 3 - 12x mũ 2 + 6x - 1
e, x mũ 3 - 6x mũ 2 y + 12xy mũ 2 - 8y mũ 3
phân tích đa thức thành nhân tử
\(x^3+6x^2y+12xy^2+9y^3\)
\(9x^3+12x^2y+6xy^2+y^3\)
\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)
\(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)
\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)
\(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)
\(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).