Những câu hỏi liên quan
Đàm Minh Quang
Xem chi tiết
kagamine rin len
28 tháng 2 2017 lúc 19:38

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

Bình luận (0)
qưet
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:20

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:30

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:32

5.

\(\frac{a\sqrt{b-1}+b\sqrt{a-1}}{ab}=\frac{1.\sqrt{b-1}}{b}+\frac{1.\sqrt{a-1}}{a}\le\frac{1+b-1}{2b}+\frac{1+a-1}{2a}=1\)

\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\)

Dấu "=" xảy ra khi \(a=b=2\)

6. Áp dụng BĐT cơ bản:

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow\left(ab+bc+ca\right)^2\ge3\left(ab.bc+bc.ca+ab+ca\right)\)

\(\Rightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Tuyền
Xem chi tiết
nguyễn kim thương
11 tháng 5 2017 lúc 12:18

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

Bình luận (0)
tth_new
27 tháng 3 2019 lúc 9:32

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

Bình luận (0)
Đinh Diệp
Xem chi tiết
tthnew
7 tháng 8 2019 lúc 8:57

a) \(BĐT\Leftrightarrow\sqrt{x}^2-2\sqrt{xy}+\sqrt{y}^2=\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)

ĐẲng thức xảy ra khi x = y

b)Sửa đề: biểu thức >= 8

Có: \(\frac{6}{a}-1=\frac{a+b+c}{a}-1=\frac{b+c}{a}\)

Tương tự hai đẳng thức còn lại rồi nhân theo vế:

\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\frac{8abc}{abc}=8\) (đpcm)

đẳng thức xảy ra khi a = b = c = 2

Bình luận (4)
Lê Thanh Quang
Xem chi tiết
Đỗ Xuân Tuấn Minh
Xem chi tiết
Tran Le Khanh Linh
12 tháng 4 2020 lúc 16:03

1) Bài này có 2 cách giải

Cách 1:

để ý rằng \(\hept{\begin{cases}1-x^2=\left(1-x\right)\left(1+x\right)=\left(y+z\right)\left(2x+y+z\right)\\x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\end{cases}}\)

ta có: \(\frac{1-x^2}{x+yz}=\frac{a\left(b+c\right)}{bc}=\frac{a}{b}+\frac{a}{c}\)

trong đó: \(a=y+z;b=z+x;c=x+y\). Tương tự, ta cũng có:

\(\hept{\begin{cases}\frac{1-y^2}{y+zx}=\frac{b}{c}+\frac{b}{a}\\\frac{1-z^2}{z+xy}=\frac{c}{a}+\frac{c}{b}\end{cases}}\)

Do đó sử dụng BĐT AM-GM ta có:

\(VT_{\left(1\right)}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)

Dấu "=" xảy ra khi a=b=c và x=y=z=\(\frac{1}{3}\)

Cách 2:

Sử dụng BĐT AM-GM  dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x+yz\le x+\frac{\left(y+z\right)^2}{4}=x+\frac{\left(1-x\right)^2}{4}=\frac{\left(1+x\right)^2}{4}\)

Do đó: \(\frac{1-x^2}{x+yz}\ge\frac{4\left(1-x^2\right)}{\left(1+x\right)^2}=\frac{4\left(1-x\right)}{1+x}=4\left(\frac{2}{1+x}-1\right)\)

tương tự có:\(\hept{\begin{cases}\frac{1-y^2}{x+yz}\ge4\left(\frac{2}{1+y}-1\right)\\\frac{1-z^2}{z+xy}\ge4\left(\frac{2}{1+z}-1\right)\end{cases}}\)

Cộng các đánh giá trên và sử dụng BĐT Cauchy-Schwarz dạng cộng mẫu, ta được

\(VT_{\left(1\right)}\ge8\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)-12\)

               \(\ge8\cdot\frac{9}{3+x+y+z}+12=6\)

Bình luận (0)
 Khách vãng lai đã xóa
Trương Quang Bảo
Xem chi tiết
Tuan Minh Do Xuan
Xem chi tiết
Đặng Tuấn Anh
Xem chi tiết
Online Math
25 tháng 5 2017 lúc 20:35

1.

Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:

         \(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

tương tự, ta có:

         \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)

         \(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)

Cộng theo vế của 3 BĐT trên, ta được:

     \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)        (ĐPCM)

ý b nghĩ đã ~.~

Bình luận (0)
Online Math
25 tháng 5 2017 lúc 20:41

2. 

P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)

Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!

Bình luận (0)
s2 Lắc Lư  s2
25 tháng 5 2017 lúc 21:10

mik vẫn chưa hình dung cách lm câu b của bạn kia,,,,,

theo mik thì tek này nè: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)

lm tương tự r cộng lại,,,ok???

Bình luận (0)