Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yêu lớp 6B nhiều không c...
Xem chi tiết
Akai Haruma
13 tháng 10 2018 lúc 10:15

Lời giải:

Ta có:

\(x^3+x^2z+y^2z-xyz+y^3=(x^3+y^3)+(x^2z+y^2z-xyz)\)

\(=(x+y)(x^2-xy+y^2)+z(x^2+y^2-xy)\)

\(=(x^2-xy+y^2)(x+y+z)=(x^2-xy+y^2).0=0\)

Ta có đpcm.

Hoàn Minh
Xem chi tiết
Anh Phạm Phương
Xem chi tiết
Trần Thanh Phương
3 tháng 8 2019 lúc 17:30

Đặt \(\left(xy;yz;zx\right)\rightarrow\left(a;b;c\right)\)

Ta có : \(abc=xy\cdot yz\cdot zx=x^2y^2z^2\)

Giả thiết tương đương với \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)( cái này bạn tự chứng minh )

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Đến đây xét 2 trường hợp rồi giải ra là xong.

TXT Channel Funfun
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 6:23

Đề bài sai, phản ví dụ: \(x=y=\dfrac{1}{16};z=256\)

Nói chung, chỉ cần 2 biến đủ nhỏ là BĐT này đều sai

 

Nguyễn Lê Phương Thảo
Xem chi tiết
Nguyễn Hoàng
Xem chi tiết
dinh huong
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 8 2021 lúc 20:40

\(\dfrac{x^3}{2y+1}+\dfrac{2y+1}{9}+\dfrac{1}{3}\ge3\sqrt[3]{\dfrac{x^3\left(2y+1\right)}{27\left(2y+1\right)}}=x\)

Tương tự: \(\dfrac{y^3}{2z+1}+\dfrac{2z+1}{9}+\dfrac{1}{3}\ge y\) ; \(\dfrac{z^3}{2x+1}+\dfrac{2x+1}{9}+\dfrac{1}{3}\ge z\)

Cộng vế:

\(VT+\dfrac{2\left(x+y+z\right)+3}{9}+1\ge x+y+z\)

\(\Rightarrow VT\ge\dfrac{7}{9}\left(x+y+z\right)-\dfrac{4}{3}\ge\dfrac{7}{9}.3\sqrt[3]{xyz}-\dfrac{4}{3}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Huyền Nguyễn Khánh
Xem chi tiết
Kiều Oanh
1 tháng 1 2016 lúc 10:34

3x²y²z² = x³y³ y³z³ z³x³ 
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3

Nguyen Viet Anh
Xem chi tiết
tth_new
31 tháng 7 2019 lúc 15:00

Em thử làm, sai thì thôi nha!

Ta có: \(x^3+y^3+z^3+2\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

Áp dụng BĐT AM-GM và BĐT Nesbitt ta có:

\(VT\ge3\sqrt[3]{\left(xyz\right)^3}+2.\frac{3}{2}\ge3+3=6\)

Đẳng thức xảy ra khi x = y = z = 1.

Vậy.....

Is it right???