Cho phương trình x^2 - 2mx -6m -9 = 0
a) cm mọi giá trị m phương trình luôn có 2 nghiệm
b tìm m để x1^2 + x2^2 = 13
c) tìm m để x1^2x2+ x1x2^2 đạt giá trị lớn nhất
__ Các bạn giúp mình với__
Cho phương trình : 2 x 2 − 2 m x + m 2 − 2 = 0 1 , với m là tham số.
a) Giải phương trình (1) khi m= 2.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x 1 , x 2 sao cho biểu thức A = 2 x 1 x 2 − x 1 − x 2 − 4 đạt giá trị lớn nhất.
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
cho phương trình x² - 2(m+1)x +m² +4 = 0 . tìm m để phương trình có hai nghiệm x1 x2 sao cho C = x1 +x2 - x1x2 +3 đạt giá trị lớn nhất và tìm giá trị lớn nhất đó
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)]^2-(m^2+4) >= 0`
`<=>m^2+2m+1-m^2-4 >= 0`
`<=>m >= 3/2`
Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`
Ta có:`C=x_1+x_2-x_1.x_2+3`
`<=>C=2m+2-m^2-4+3`
`<=>C=-m^2+2m+1`
`<=>C=-(m^2-2m+1)+2`
`<=>C=-(m-1)^2+2`
Vì `-(m-1)^2 <= 0 AA m >= 3/2`
`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`
Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)
Vậy không tồn tại `m` để `C` có `GTLN`
Cho phương trình bậc hai x^2-mx+m-3=0 Chứng minh rằng phương trình luôn có nghiệm với mọi m Tìm các giá trị m để phương trình có hai nghiệm x1 x2 sao cho bt A=2(x1+x2)-x1×x2) đạt giá trị nhỏ nhất
Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`
`=>` Ptr luôn có nghiệm `AA m`
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`
Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`
`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`
`<=>A=2[m^2-2(m-3)]-(m-3)`
`<=>A=2(m^2-2m+6)-m+3`
`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`
`<=>A=2(m^2-5/2+15/2)`
`<=>A=2[(m-5/4)^2+95/16]`
`<=>A=2(m-5/4)^2+95/8`
Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`
Hay `A >= 95/8 AA m`
Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`
Vậy `GTN N` của `A` là `95/8` khi `m=5/4`
Đề liệu cs sai 0 bạn nhỉ, ở cái biểu thức `A` í chứ nếu đề vậy thì 0 tìm đc GTNN đâu (Theo mik thì là vậy)
cho phương trình x2+(m-3)x-m+1=0 A)tìm m để phương trình có 2 no x1,x2 sao cho P=x1x2-x21-x22 đạt giá trị lớn nhất B)tìm m để phương trình có 2no x1,x2 cho bt T=15/(x1-3x2)x1+x22 đạt giá trị lớn nhất 3x2 là x2 ko phải là mũ 2 ạ ở phần này ko có mũ 2 ạ X22 cái nào em viết trc là ở trên ạ Em cảm ơn ạ
Cho phương trình x2 - 2mx + m - 2 = 0 ( m là tham số )
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m
b) Gọi x1 ; x2 là các nghiệm của phương trình. Tìm giá trị của m để biểu thức
\(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}\) đạt giá trị nhỏ nhất
a: Δ=(-2m)^2-4(m-2)
=4m^2-4m+8=(2m-1)^2+7>=7>0
=>PT luôn có hai nghiệm phân biệt
b: x1^2+x2^2-6x1x2
=(x1+x2)^2-8x1x2
=(2m)^2-8(m-2)
=4m^2-8m+16=(2m-2)^2+8>=8
=>24/(2m-2)^2+8<=3
=>M>=-3
Dấu = xảy ra khi m=1
Cho phương trình: x² - mx + m - 1 = 0(x là ẩn) a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m b) Tìm giá trị của m để phương trình có 2 nghiệm x1, x2 thoả mãn: x1 - 2x2 = 1
cho phương trình x^2 -(2m-1)x -m =0
giải phương trình với m=2
c/m pguwowng trình trên luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m
tìm giá trị của m để A= x1^2 +x2^2 -6x1x2 đạt giá trị nhỏ nhất
thay m=2 vào ta được phương trình:
x2-3x-2=0 <bấm máy>
* CM: delta=b2-4ac=(2m-1)2-4.1.(-m)= 4m2-4m+1+4m=4m2+1
ta thấy m2 >=0 <=> 4m2>=0 <=> 4m2+1>=1>0 <=> delta>0 Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.
* >=: lớn hơn hoặc bằng. <đề còn lại ghi k rõ nên mình k giúp được =))>
Cho phương trình x 2 - 2 m + 1 x + m 2 + 2 = 0 với m là tham số. Tìm m để phương trình có hai nghiệm x 1 ; x 2 sao cho A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6 đạt giá trị nhỏ nhất
A. m =2
B. m = 1 2
C. m=1
D. m = 4 ± 10
Ta có A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6
= m 2 + 2 - 2 2 m + 2 - 6 = m 2 - 4 m - 8
⇒ A = m - 2 2 - 12 ≥ 12
Suy ra m i n A = - 12 ⇔ m = 2
m = 2 thỏa mãn (*)
Vậy với m = 2 thì biểu thức A đạt giá trị nhỏ nhất.
Đáp án cần chọn là: A
x^2-2(m-3)x-1=0
Tìm m để phương trình có nghiệm x1;x2
Mà biểu thức x1^2-x1x2+x2^2 đạt giá trị nhỏ nhất. Tìm giá trị đó.