Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vo Thi Minh Dao
Xem chi tiết
tran nguyen bao quan
24 tháng 11 2018 lúc 17:02

Ta có \(a+b+c+d=0\Leftrightarrow a+c=-\left(b+d\right)\Leftrightarrow\left(a+c\right)^3=\left[-\left(b+d\right)\right]^3\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2c-3ac^2-3b^2d-3bd^2\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)Vậy \(a+b+c+d=0\) thì \(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)

Trần Huy tâm
Xem chi tiết
B.Trâm
3 tháng 10 2019 lúc 14:53

@Nguyễn Việt Lâm

Trần Huy tâm
3 tháng 10 2019 lúc 14:53

https://hoc24.vn/id/2782086

Nguyễn Việt Lâm
29 tháng 10 2019 lúc 14:03

Ta có đánh giá \(\frac{b+2}{\left(b+1\right)\left(b+5\right)}\ge\frac{3}{4\left(b+2\right)}\)

Thật vậy, BĐT trên tương đương:

\(4\left(b+2\right)^2\ge3\left(b+1\right)\left(b+5\right)\)

\(\Leftrightarrow b^2-2b+1\ge0\Leftrightarrow\left(b-1\right)^2\ge0\) (luôn đúng)

\(\Rightarrow\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}\ge\frac{3\left(a+1\right)}{4\left(b+2\right)}\)

Tương tự và cộng lại: \(P\ge\frac{3}{4}\left(\frac{a+1}{b+2}+\frac{b+1}{c+2}+\frac{c+1}{a+2}\right)\)

\(P\ge\frac{3}{4}\left(\frac{\left(a+1\right)^2}{ab+2a+b+2}+\frac{\left(b+1\right)^2}{bc+2b+c+2}+\frac{\left(c+1\right)^2}{ca+2c+a+2}\right)\)

\(P\ge\frac{3}{4}.\frac{\left(a+b+c+3\right)^2}{ab+bc+ca+3a+3b+3c+6}\)

\(P\ge\frac{3}{4}.\frac{a^2+b^2+c^2+2ab+2bc+2ca+6a+6b+6c+9}{ab+bc+ca+3a+3b+3c+6}\)

\(P\ge\frac{3}{4}.\frac{2ab+2bc+2ca+6a+6b+6c+12}{ab+bc+ca+3a+3b+3c+6}=\frac{3}{4}.2=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Vu Ngoc Hong Chau
Xem chi tiết
cc cc
Xem chi tiết
cc cc
13 tháng 5 2019 lúc 22:03

>=8 nha

Darlingg🥝
13 tháng 5 2019 lúc 22:04

Tại sao lại bằng 8

Incursion_03
13 tháng 5 2019 lúc 23:11

 \(A=\frac{a^3+b^3-\left(a^2+b^2\right)}{\left(a-1\right)\left(b-1\right)}=\frac{a^2\left(a-1\right)+b^2\left(b-1\right)}{\left(a-1\right)\left(b-1\right)}=\frac{a^2}{b-1}+\frac{b^2}{a-1}\)

(chơi 3 cách luôn cho máu :3)

Cách 1, Áp dụng Svacxơ  đc

\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{t^2}{t-2}\left(t=a+b>2\right)\)

Ta luôn có \(\frac{t^2}{t-2}\ge8\left(1\right)\)thật vậy

\(\left(1\right)\Leftrightarrow t^2\ge8t-16\Leftrightarrow t^2-8t+16\ge0\Leftrightarrow\left(t-4\right)^2\ge0\left(True\right)\)

=> Đpcm

Cách 2, \(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2.b^2}{\left(b-1\right)\left(a-1\right)}}=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\)

Ta đi c/m \(\frac{a}{\sqrt{a-1}}\ge2\left(#\right)\)thật vậy

\(\left(#\right)\Leftrightarrow a\ge2\sqrt{a-1}\Leftrightarrow a^2\ge4a-4\Leftrightarrow a^2-4a+4\ge0\Leftrightarrow\left(a-2\right)^2\ge0\left(true\right)\)

=> (#) đúng 

tương tự\(\frac{b}{\sqrt{b-1}}\ge2\)

\(\Rightarrow A\ge2.2.2=8\)(Đpcm)

Cách 3 , \(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}=\frac{\left(a-1+1\right)^2}{b-1}+\frac{\left(b-1+1\right)^2}{a-1}\)

                 \(=\frac{\left(a-1\right)^2+2\left(a-1\right)+1}{b-1}+\frac{\left(b-1\right)^2+2\left(b-1\right)+1}{a-1}\)

               \(=\frac{\left(a-1\right)^2}{b-1}+\frac{2\left(a-1\right)}{b-1}+\frac{1}{b-1}+\frac{\left(b-1\right)^2}{a-1}+\frac{2\left(b-1\right)}{a-1}+\frac{1}{a-1}\)

                 \(=\left[\frac{\left(a-1\right)^2}{b-1}+\frac{\left(b-1\right)^2}{a-1}\right]+2\left(\frac{a-1}{b-1}+\frac{b-1}{a-1}\right)+\left(\frac{1}{b-1}+\frac{1}{a-1}\right)\)

                 \(\ge2\sqrt{\frac{\left(a-1\right)^2.\left(b-1\right)^2}{\left(b-1\right)\left(a-1\right)}}+2.2\sqrt{\frac{a-1}{b-1}.\frac{b-1}{a-1}}+\frac{2}{\sqrt{\left(a-1\right)\left(b-1\right)}}\)

                    \(=2\sqrt{\left(a-1\right)\left(b-1\right)}+\frac{2}{\sqrt{\left(a-1\right)\left(b-1\right)}}+4\)

                     \(\ge2\sqrt{2\sqrt{\left(a-1\right)\left(b-1\right)}.\frac{2}{\sqrt{\left(a-1\right)\left(b-1\right)}}}+4\)

                      \(=2.2+4=8\)

Dấu "=" xảy ra tại a = b = 2 

Sơn Phạm Chí
Xem chi tiết
Chủ acc bị dính lời nguy...
15 tháng 8 2020 lúc 16:23

1. Ta có: \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\)

\(=2a.2b=4ab\)

=> đpcm

2. Ta có: \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)

\(=2a^2+2b^2=2\left(a^2+b^2\right)\)

=> đpcm

3. Ta có:\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)

\(=a^2-2ab+b^2=\left(a-b\right)^2\)

=> đpcm

4. Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

Khách vãng lai đã xóa
Phan Nghĩa
15 tháng 8 2020 lúc 16:26

\(a,\left(a+b\right)^2-\left(a-b\right)^2=4ab\)

\(\Leftrightarrow\left(a^2+b^2+2ab\right)-\left(a^2+b^2-2ab\right)=4ab\)

\(\Leftrightarrow a^2+b^2-a^2-b^2+2ab+2ab=4ab\)

\(\Leftrightarrow4ab=4ab\Leftrightarrow4ab-4ab=0\Leftrightarrow0=0\)(đpcm)

\(b,\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a^2+b^2+2ab\right)+\left(a^2+b^2-2ab\right)=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2+a^2+b^2+\left(2ab-2ab\right)=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2\left(a^2+b^2\right)=2\left(a^2+b^2\right)\Leftrightarrow2\left(a^2+b^2\right)-2\left(a^2+b^2\right)=0\Leftrightarrow0=0\)(đpcm)

\(c,\left(a+b\right)^2-4ab=\left(a-b\right)^2\)

\(\Leftrightarrow\left(a^2+b^2+2ab\right)-4ab=a^2+b^2-2ab\)

\(\Leftrightarrow a^2+b^2-2ab=a^2+b^2-2ab\)

\(\Leftrightarrow\left(a-b\right)^2=\left(a-b\right)^2\Leftrightarrow\left(a-b\right)^2-\left(a-b\right)^2=0\Leftrightarrow0=0\)(đpcm)

\(d,\left(a-b\right)^2+4ab=\left(a+b\right)^2\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+4ab=\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2-2ab+4ab=\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab=\left(a+b\right)^2\Leftrightarrow\left(a+b\right)^2=\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)^2=0\Leftrightarrow0=0\)(đpcm)

Khách vãng lai đã xóa
Nobi Nobita
15 tháng 8 2020 lúc 16:29

1) \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=2b.2a=4ab\)( đpcm )

2) \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)

\(=2\left(a^2+b^2\right)\)( đpcm )

3) \(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)

\(=a^2-2ab+b^2=\left(a-b\right)^2\)( đpcm )

4) \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)( đpcm )

Khách vãng lai đã xóa
Hồ Quỳnh Thơ
Xem chi tiết
Ashshin HTN
6 tháng 7 2018 lúc 15:05

tích đúng mình làm cho

Hồ Quỳnh Thơ
6 tháng 7 2018 lúc 15:08

bạn giải giùm với ạk

Kiên-Messi-8A-Boy2k6
6 tháng 7 2018 lúc 15:09

Ta có: \(VP=\left(a-b\right)\left(a-b\right)+4ab\)

\(=a^2-2ab-b^2+4ab\)

\(=a^2-b^2+2ab=\left(a+b\right)^2=VT\left(đpcm\right)\)

b, \(VP=\left(a+b\right)\left(a+b\right)-4ab\)

\(=a^2+2ab+b^2-4ab\)

\(=a^2+b^2-2ab=\left(a-b\right)^2=VT\left(đpcm\right)\)

Linh Pea
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2020 lúc 22:19

a) Sửa đề: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

Ta có: \(VP=\left(a-b\right)^2+4ab\)

\(=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2=VT\)(đpcm)

b) Ta có: \(VT=\left(a-b\right)^2\)

\(=a^2-2ab+b^2\)

\(=a^2+2ab+b^2-4ab\)

\(=\left(a+b\right)^2-4ab=VP\)(đpcm)

c) Ta có: \(VP=\left(ax-by\right)^2+\left(ay+bx\right)^2\)

\(=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)

\(=a^2x^2+b^2y^2+a^2y^2+b^2x^2\)

\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)\left(a^2+b^2\right)=VT\)(đpcm)

shitbo
Xem chi tiết
shitbo
12 tháng 6 2019 lúc 17:07

Ta có :)

\(\hept{\begin{cases}a^2+b^2\ge2\sqrt{a^2b^2}=2|ab|\\b^2+c^2\ge2\sqrt{b^2c^2}=2|bc|\\c^2+a^2\ge\sqrt{c^2a^2}=2|ca|\end{cases}}\Rightarrow\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8|\left(abc\right)^2|=8a^2b^2c^2\)

(vì a2+b2; b2+c2; c2+a2;|ab|;|bc|;|ca| đều \(\ge0\))

lê phong
Xem chi tiết
Lê Công Thành
19 tháng 7 2017 lúc 21:18

a)VT=\(\left(a+b\right)^2=a^2+2ab+b^2\)(1)VP=\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)(2)

từ (1) và (2)\(\Rightarrow\)VT=VP.Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)

Quang Duy
19 tháng 7 2017 lúc 21:19

a) Ta có \(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2=VT\)

\(\Rightarrow\)đpcm

b) Ta có \(VP=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)

\(=a^2-2ab+b^2=\left(a-b\right)^2=VT\)

\(\Rightarrow\)đpcm

T.Thùy Ninh
19 tháng 7 2017 lúc 21:21

a, Ta có:

\(\left(a-b\right)^2+4ab\)

\(=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2=VT\)

=>đpcm

b, ta có:

\(Vp=\left(a+b\right)^2-4ab\)

\(=a^2+2ab+b^2-4ab\)

\(=a^2-2ab+b^2=\left(a-b\right)^2=VT\)

=>đpcm