Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Pea

a) \(\left(a+b\right)^2=\left(a-b\right)+4ab \)
b) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
c) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(ay+bx\right)^2\)

Nguyễn Lê Phước Thịnh
17 tháng 8 2020 lúc 22:19

a) Sửa đề: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

Ta có: \(VP=\left(a-b\right)^2+4ab\)

\(=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2=VT\)(đpcm)

b) Ta có: \(VT=\left(a-b\right)^2\)

\(=a^2-2ab+b^2\)

\(=a^2+2ab+b^2-4ab\)

\(=\left(a+b\right)^2-4ab=VP\)(đpcm)

c) Ta có: \(VP=\left(ax-by\right)^2+\left(ay+bx\right)^2\)

\(=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)

\(=a^2x^2+b^2y^2+a^2y^2+b^2x^2\)

\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)\left(a^2+b^2\right)=VT\)(đpcm)


Các câu hỏi tương tự
Quỳnh Như
Xem chi tiết
lê phong
Xem chi tiết
Trần Văn Thanh
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết
Trang
Xem chi tiết
Thương Thương
Xem chi tiết
Trần Đức Mạnh
Xem chi tiết
Lưu Vũ Hân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết