Cho \(\Delta ABC\) vuông tại A đường cao AH = a, HB = b. Gọi D là điểm đối xứng với A qua B. Trên tia đối của tia HA lấy điểm E sao cho HE = 2HA.
a, Tính tan\(\widehat{AED}\) theo a và b
b, C/minh: \(\widehat{DEC}=90^0\)
Cho \(\Delta ABC\) vuông tại A đường cao AH = a, HB = b. Gọi D là điểm đối xứng với A qua B. Trên tia đối của tia HA lấy điểm E sao cho HE = 2HA.
a, Tính tan\(\widehat{AED}\) theo a và b
b, C/minh: \(\widehat{DEC}=90^0\)
a) Kẻ DK // BH, ta có BH là đường trung bình của ΔADK hay AH = HK = EK = a; DK = 2.BH = 2b.
Xét trong tam giác vuông DKE ta suy ra:
\(tan\widehat{AED}=tan\widehat{KED}=\frac{DK}{EK}=\frac{2b}{a}\)
b) Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có đường cao AH, ta có:
\(AH^2=BH.CH\)\(\Leftrightarrow CH=\frac{AH^2}{BH}=\frac{a^2}{b}\)
Xét tam giác DKE và tam giác EHC có:
\(\frac{DK}{EH}=\frac{EK}{CH}=\frac{b}{a}\); \(\widehat{DKE}=\widehat{EHC}=90^0\)
⇔ ΔDKE ~ ΔEHC (c.g.c)
⇔ \(\widehat{KED}=\widehat{HCE}\)
\(\Leftrightarrow\widehat{DEC}=\widehat{KED}+\widehat{HEC}=\widehat{HCE}+\widehat{HEC}=90^0\)
Vậy .....
cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với A qua điểm B. Trên tia đối của tia HA lấy điểm E sao cho HE=2HA. Gọi I là hình chiếu của D trên HE
a) Tính AB, AC, HC, biết AH=4cm, HB=3cm
b) Tính tan góc IED, tan góc HCE
b) Chứng minh góc IED= góc HCE
d) Chứng minh DE ⊥ EC
a) Py-ta-go \(\Delta ABH\), ta có : \(AB^2=AH^2+BH^2=25\Rightarrow AB=5\)
\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{16}{3}\)
\(AB.AC=AH.BC\)hay \(5.AC=4.\left(3+\frac{16}{3}\right)\Rightarrow AC=\frac{20}{3}\)
b) HB // DI ( cùng vuông góc AI )
\(\Rightarrow\frac{BH}{DI}=\frac{AB}{AD}=\frac{1}{2}\Rightarrow DI=2BH=6\)
\(\frac{AH}{HI}=\frac{AB}{BD}=1\)kết hợp với AH = 2HE \(\Rightarrow AH=HI=IE=4\)
\(\tan\widehat{IED}=\frac{DI}{IE}=\frac{6}{4}=\frac{3}{2}\)
\(\tan\widehat{HCE}=\frac{HE}{HC}=\frac{8}{\frac{16}{3}}=\frac{3}{2}\)
c) theo câu b, \(\Rightarrow\tan\widehat{IED}=\tan\widehat{HCE}=\frac{3}{2}\)\(\Rightarrow\widehat{IED}=\widehat{HCE}\)
d) \(\widehat{HCE}+\widehat{HEC}=90^o\Rightarrow\widehat{IED}+\widehat{HEC}=90^o\Rightarrow\widehat{DEC}=90^o\Rightarrow DE\perp EC\)
cho tam giác ABC vuông tại A đường cao AH . Gọi D là điểm đối xứng với A qua điểm B . Trên tia đối của tia HA lấy điểm E sao cho HE = 2HA . Gọi I là hình chiếu của D trên HE
a) tính AB , AC , HC biết AH= 4cm , HB= 3cm
b) tính tan góc IED . tan góc HCE
c) chứng minh góc IED= góc HCE
d) chứng minh DE vuông góc EC
a)
Ta có: HE=HA(gt)
mà A,H,E thẳng hàng
nên H là trung điểm của AE
Xét ΔAED có
H là trung điểm của AE(cmt)
M là trung điểm của AD(A và D đối xứng nhau qua M)
Do đó: HM là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)
⇒HM//ED và \(HM=\dfrac{1}{2}\cdot ED\)(Định lí 2 về đường trung bình của tam giác)
b) Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(A và D đối xứng nhau qua M)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)(ΔABC vuông tại A)
nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Cho tam giác ABC vuông tại A, đường cao AH = 4cm, HB = 3cm.
1. Tính độ dài của AB, AC, HC.
2. Gọi D là điểm đối xứng của A qua B, trên tia đối của tia Ha lấy điểm E sao cho HE = 2HA. Gọi I là hình chiếu của D trên HE. Chứng minh I là trung điểm của HE. Tính giá trị của biểu thức: P = 2tan góc IED – 3 tan góc ECH.
3. Chứng minh CE vuông góc với ED.
Cho tam giác ABC vuông tại A, đường cao AH = 4 cm, HB = 3 cm.
a) Tính độ dài của AB, AC, HC.
b) Gọi D là điểm đối xứng của A qua B, trên tia đối của tia HA lấy điểm E sao cho HE = 2HA. Gọi I là hình chiếu của D trên HE. Chứng minh I là trung điểm của HE. Tính giá trị của biểu thức: P = 2tan góc IED − 3 tan góc ECH
c) Chứng minh CE vuông góc với ED.
a) Xét tam giác \(AHB\)vuông tại \(H\):
\(AB^2=AH^2+HB^2\)(định lí Pythagore)
\(\Rightarrow AB=\sqrt{AH^2+HB^2}=\sqrt{4^2+3^2}=5\left(cm\right)\)
Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{4^2}-\frac{1}{5^2}\)
\(\Rightarrow AC=\frac{20}{3}\left(cm\right)\)
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{25+\frac{400}{9}}=\frac{25}{3}\left(cm\right)\)
\(HC=BC-HB=\frac{25}{3}-3=\frac{16}{3}\left(cm\right)\)
b) Xét tam giác \(AID\)có: \(B\)là trung điểm của \(AD\)
\(BH//ID\)(vì cùng vuông góc với \(AI\))
nên \(BH\)là đường trung bình của tam giác \(AID\).
Suy ra \(H\)là trung điểm của \(AI\).
\(\Rightarrow AH=HI\Rightarrow HI=\frac{1}{2}HE\)
do đó \(I\)là trung điểm của \(HE\).
\(P=2tan\widehat{IED}-3tan\widehat{ECH}\)
\(=2\frac{ID}{IE}-3\frac{CH}{HE}\)
\(=\frac{4HB}{AH}-\frac{3}{2}\frac{CH}{AH}\)
\(=\frac{8.3-3.\frac{16}{3}}{2.4}=1\)
c) \(tan\widehat{IED}=\frac{ID}{IE}=\frac{2HB}{AH}=\frac{2.3}{4}=\frac{3}{2}\)
\(cot\widehat{CEH}=\frac{EH}{CH}=\frac{2AH}{CH}=\frac{2.4}{\frac{16}{3}}=\frac{3}{2}\)
\(tan\widehat{IED}=cot\widehat{CEH}\Rightarrow\widehat{IED}+\widehat{CEH}=90^o\Rightarrow\widehat{CED}=90^o\)
do đó ta có đpcm.
Cho tam giác ABC vuông tại A. Gọi O là trung điểm BC. D là điểm đối xứng của A qua O. a) Cm tứ giác ABCD là hcn b) Vẽ đường cao AH. Trên tia đối của HA lấy điểm E sao cho HE=HA. Cm tam giác AED vuông và tam giác BEC vuông c) Gọi M,N lần lượt là hình chiếu của E lên BD và CD. EM cắt AD tại K. Cm DE=DK
a: Xét tứ giác ABDC có
O là trung điểm chung của AD và BC
góc BAC=90 độ
Do đó: ABDC là hình chữ nhật
b: Xét ΔAED có HA/AE=AK/AD
nen HK//ED
=>ED vuông góc với AE
=>ΔAED vuông tại E
Xét ΔCAB và ΔCEB có
BA=BE
CB chung
AC=EC
Do đó: ΔCAB=ΔCEB
=>góc CEB=90 độ
=>ΔBEC vuông tại E
Cho tam giác ABC vuông tại A, đường cao AH. Điểm D đối xứng với A qua B, trên tia đối của tia Ah lấy E sao cho HỆ = 2 HA. Gọi I là hình chiếu của D trên HE.
a) Tính AB, Ac, HC biết AH = 4 cm, HB = 3 cm.
b) Tính tam IED, tam HCE
c) Chứng minh DE vuông góc với EC.
a)
Có: \(AH^2=HB.HC\left(HTL\right)\)
=> \(16=3HC\Rightarrow HC=\frac{16}{3}\)
Lần lượt áp dụng định lí PYTAGO ta được:
\(\hept{\begin{cases}AH^2+HB^2=AB^2\\AH^2+HC^2=AC^2\end{cases}}\)
=> \(\hept{\begin{cases}16+9=AB^2\\16+\frac{256}{9}=AC^2\end{cases}}\)
=> \(\hept{\begin{cases}AB=5\\AC=\frac{20}{3}\end{cases}}\)
b) Có: BH và DI cùng vuông góc với EI
=> BH // DI
=> ÁP DỤNG ĐỊNH LÍ TALET TA ĐƯỢC:
=> \(\frac{AB}{AD}=\frac{AH}{AI}=\frac{BH}{DI}\)
Mà: \(\frac{AB}{AD}=\frac{1}{2}\left(gt\right)\)
=> \(\frac{AH}{AI}=\frac{BH}{DI}=\frac{1}{2}\)
=> \(AH=HI\)
=> \(DI=6;HI=4\)
MÀ: \(EA=AH\left(gt\right)=4\)
=> DIện tích tam giác IED \(=\frac{ID.IE}{2}=\frac{6.12}{2}=36\)
Có: \(HC=\frac{16}{3};HE=8\left(CMT\right)\)
=> Diện tích tam giác HCE \(=\frac{HC.HE}{2}=\frac{16}{3}.8:2=\frac{64}{3}\)
Câu c xem lại đề nha, mình vẽ thì DE ko vuông góc với EC đâu nhaaaaaaa
Bài toán 4 : Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi O là trung điểm của BC, D là điểm đối xứng của A qua O. a) Chứng minh tứ giác ABDC là hình chữ nhật. b) Trên tia đối của tia HA lấy điểm E sao cho HE - HA. Chứng minh tam giác AED vuông và tam giác BEC vuông. c) Gọi M, N lần lượt là hình chiều của E lên BD và CD, EM cắt AD tại K. Chứng minh DE = DK.
giúp mk vs ạ !
TÌM MỘT SỐ CÓ BÔN CHỮ SỐ,BIẾT CHỮ SỐ HÀNG TRĂM GẤP ĐÔI CHỮ SỐ HÀNG NGHÌN,CHỮ SỐ HÀNG CHỤC GẤP ĐÔI CHỮ SỐ HÀNG TRĂM, CHỮ SỐ HÀNG ĐƠN VỊ LỚN HƠN CHỮ SỐ HÀNG CHỤC LÀ 3.