Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Măm Măm

Cho \(\Delta ABC\) vuông tại A đường cao AH = a, HB = b. Gọi D là điểm đối xứng với A qua B. Trên tia đối của tia HA lấy điểm E sao cho HE = 2HA.

a, Tính tan\(\widehat{AED}\) theo a và b

b, C/minh: \(\widehat{DEC}=90^0\)

Vũ Huy Hoàng
24 tháng 7 2019 lúc 16:31

a) Kẻ DK // BH, ta có BH là đường trung bình của ΔADK hay AH = HK = EK = a; DK = 2.BH = 2b.

Xét trong tam giác vuông DKE ta suy ra:

\(tan\widehat{AED}=tan\widehat{KED}=\frac{DK}{EK}=\frac{2b}{a}\)

b) Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có đường cao AH, ta có:

\(AH^2=BH.CH\)\(\Leftrightarrow CH=\frac{AH^2}{BH}=\frac{a^2}{b}\)

Xét tam giác DKE và tam giác EHC có:

\(\frac{DK}{EH}=\frac{EK}{CH}=\frac{b}{a}\); \(\widehat{DKE}=\widehat{EHC}=90^0\)

⇔ ΔDKE ~ ΔEHC (c.g.c)

\(\widehat{KED}=\widehat{HCE}\)

\(\Leftrightarrow\widehat{DEC}=\widehat{KED}+\widehat{HEC}=\widehat{HCE}+\widehat{HEC}=90^0\)

Vậy .....


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
lê tường
Xem chi tiết
Trí Phạm
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Băng
Xem chi tiết
huỳnh thị ngọc ngân
Xem chi tiết