Chứng tỏ rằng
f(x)=144x2 -120x +26 ≥ 1
E= 9x2 + 16y2 - 30x + 8y +26 ≥ 0
a.4x2+28x+49
b.16y2-8y+1
c.4a2+20ab+25b2
d.9x2-6xy+y2
\(a,4x^2+28x+49=\left(2x\right)^2+2.2x.7+7^2=\left(2x+7\right)^2\\ b,16y^2-8y+1=\left(4y\right)^2-2.4y.1+1^2=\left(4y-1\right)^2=\left(1-4y\right)^2\\ 4a^2+20ab+25b^2=\left(2a\right)^2+2.2a.5b+\left(5b\right)^2=\left(2a+5b\right)^2\\ d,9x^2-6xy+y^2=\left(3x\right)^2-2.3x.y+y^2=\left(3x-y\right)^2=\left(y-3x\right)^2\)
chứng tỏ rằng: 10x-26-4x2 < 0 với mọi x
Bn ko phải tk cho mk đừng k nhé
Ta có:\(10x-26-4x^2=-\left(4x^2-10x+26\right)\)
\(=-\left[\left(2x\right)^2-10x+\left(\frac{5}{2}\right)^2+\frac{79}{4}\right]\)
\(=-\frac{79}{4}-\left(2x-\frac{5}{2}\right)^2\le-\frac{79}{4}\)
Vậy 10x-26-4x2 < 0 với mọi x
Cho phương trình 9 x 2 + 2 ( m 2 - 1 ) x + 1 = 0 . Chứng tỏ rằng với m > 2 phương trình có hai nghiệm phân biệt âm.
chứng tỏ rằng 1/20*23+1/23*26+1/26*29.........+1/77*80<1/9
Ta có :
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\left(\frac{3}{80}< 1\right)\)
\(\Leftrightarrow\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}< \frac{1}{3}\left(đpcm\right)\)
\(M=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77x80}\)
\(M=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)
\(M=\frac{1}{20}-\frac{1}{80}=\frac{3}{80}\)
\(\frac{3}{80}=\frac{3x9}{80x9}=\frac{27}{720};\frac{1}{9}=\frac{1x80}{9x80}=\frac{80}{720}\)
Vì \(\frac{27}{720}< \frac{80}{720}\Rightarrow\frac{3}{80}< \frac{1}{9}\Rightarrow M< \frac{1}{9}\)
#~Will~be~Pens~#
Hoàng Nguyên Hiếu:Sai rồi nha bạn
\(\frac{1}{20.23}=\frac{1}{20}-\frac{1}{23}\Leftrightarrow23-20=1\)
-.-
Phân tích các đa thức sau thành nhân tử:
\(e,30x^3-18x^2y-72y+120x\)
\(f,70x-84y+20xy-24y^2\)
e, (30x3+120x)-(18x2y+72y)
=30x(x2+4)-18y(x2+4)
=(x2+4)(30x-18y)
f,(70x+20xy)-(84y+24y2)
= 10x(7+2y)-12y(7+2y)
=)7+2y)(10x-12y)
e) 30x3 - 18x2y - 72y +120x
= 6 ( 5x3 - 3x2y - 12y + 20x )
= 6 ( x2 (5x - 3y) + 4 (5x - 3y)
= 6 (x2+4)(5x-3y)
f) 70x - 84y + 20xy -24y2
= 2 (35x - 42y + 10xy - 12y2)
= 2 ( 7(5x - 6y) + 2y(5x - 6y))
= 2(5x-6y)(7+2y)
Chứng tỏ
0,(26)+0,(73)=1
9x2-24xy+16y2
Bài 1: Phân tích đa thức thành nhân tử: a) 4y3 + 16y2 + 16y b) 8x2-48x+6xy-36y c) 8x2-48x-6xy+36y d) a2 –2ab+b2 –4 e) 4–x2 –4xy–4y2 f) 8a2 –16a+8ax–16x g) 16–4x2 +8xy–4y2 h) –4x2 –16xy–16y2 Bài 2: Tìm x, biết: a) x3 – 6x2 + 9x = 0 b) 5x(x–6)+3x–18=0 c) 5x(x – 6) – 18 + 3x = 0 d) 5x(x – 6) – 3x + 18 = 0 e) (2x – 3)2 = (5 – x)2 f) (2x + 1)2 = (3x – 2)2 g) 16(2x–3)=-25x2 (3–2x)
b: \(8x^2-48x+6xy-36y\)
\(=8x\left(x-6\right)+6y\left(x-6\right)\)
\(=2\left(x-6\right)\left(4x+3y\right)\)
d: \(a^2-2ab+b^2-4\)
\(=\left(a-b\right)^2-4\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)
a, (-67).(1-301) - 301.67
b,26.(-125)-125.(-36)
c, -16+23+x =-16
d,2x-35=15
e,|x-1|=0
f,-13.|x|=-26