tìm gtnn
A=3x^2-7x+8
Tìm gtln
B= 9x-5x^+3
Tìm GTNN
a) A=9x^2+5y^2-5x+3y
Tìm GTLN
a) A= -4x^2-5y^2+8xy+10y+12
b) B= -3x^2-16y^2-8xy-5x+2
Bài 1:
$A=(9x^2-5x)+(5y^2+3y)$
$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$
$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$
$\geq \frac{-103}{90}$
Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$
$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$
Bài 2:
a.
$-A=4x^2+5y^2-8xy-10y-12$
$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$
$=(2x-2y)^2+(y-5)^2-37\geq -37$
$\Rightarrow A\leq 37$
Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$
$\Leftrightarrow x=y=5$
b.
$-B=3x^2+16y^2+8xy+5x-2$
$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$
$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$
$\geq \frac{-41}{8}$
$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$
$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$
Tìm x thuộc Z: (3x4-5x3+7x2-9x+2) chia hết cho (3x+1)
Tìm x biết 2+ 3x + 5x + 7x + 9x + ... + 99x = 7500
=> 2 + 3 + 5 + 7+ ... +99 + 49X = 2 + 2499 + 49X
= 2501 + 49 X = 7500
=> 49X = 7500 - 2501 = 4999
=>X = 4999 : X = \(\frac{4999}{49}\)
M(x)= 9x^3-5x^2+7x+5 tìm đa thức N(x) sao cho M(x)+N(x)= 4x^2-3x
Ta có: \(M\left(x\right)+N\left(x\right)=4x^2-3x\Rightarrow N\left(x\right)=\left(4x^2-3x\right)-M\left(x\right)\)
\(N\left(x\right)=\left(4x^2-3x\right)-\left(9x^3-5x^2+7x+5\right)\)
\(N\left(x\right)=4x^2-3x-9x^3+5x^2-7x-5\)
\(N\left(x\right)=-9x^3+\left(4x^2+5x^2\right)-\left(3x+7x\right)-5\)
\(N\left(x\right)=-9x^3+9x^2-10x-5\)
Vậy đa thức N(x) là \(N\left(x\right)=-9x^3+9x^2-10x-5\)
Tìm `x` thỏa mãn:
`|9x - 8| + |7x - 6| + |5x - 4| + |3x - 2| + x = 0`.
|9x−8|+|7x−6|+|5x−4|+|3x−2|+x=0(1)|9x−8|+|7x−6|+|5x−4|+|3x−2|+x=0(1).
Vì |9x−8|+|7x−6|+|5x−4|+|3x−2|>0∀x|9x−8|+|7x−6|+|5x−4|+|3x−2|>0∀x
Nên từ (1) ⇒x<0⇒9x−8;7x−6;5x−4;3x−2<0⇒x<0⇒9x−8;7x−6;5x−4;3x−2<0.
Phương trình (1) trở thành:
8−9x+6−7x+4−5x+2−3x+x=0⇔20−23x=0⇔x=20/23>0(ktm)
Tìm x
a) 6x(5x + 3) + 3x(1 – 10x) = 7 b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
c) (x + 1)(x + 2)(x + 5) – x2(x + 8) = 27
d) 5x(12x + 7) – 3x(20x – 5) = - 100
e) 0,6x(x – 0,5) – 0,3x(2x + 1,3) = 0,138
a) 6x(5x + 3) + 3x(1 – 10x) = 7
⇒ 30x2+18x+3x-30x2=7
⇒21x=7
⇒x=\(\dfrac{7}{21}\)
⇒x= \(\dfrac{1}{3}\)
b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
⇒15x-63x2-15+63x + 63x2-35x+36x-20=44
⇒79x-35=44
⇒79x=44+35
⇒79x=79
⇒x=1
d) 5x(12x + 7) – 3x(20x – 5) = - 100
⇒60x2+35x-60x2+15=-100
⇒35x+15=-100
⇒35x=-100-15
⇒35x=-115
⇒x=\(\dfrac{-115}{35}\)
⇒x=\(\dfrac{-23}{7}\)
tính nghiệm x) 1 mũ 2 -9x+8 2)3x mũ 2 -7x+4 3)2x mũ 2+5x-7 4) 3x mũ 2-9x+6 5)x mũ 2 +2x-3
1: x^2-9x+8=0
=>(x-1)(x-8)=0
=>x=1 hoặc x=8
2: 3x^2-7x+4=0
=>3x^2-3x-4x+4=0
=>(x-1)(3x-4)=0
=>x=4/3 hoặc x=1
3: 2x^2+5x-7=0
=>(2x+7)(x-1)=0
=>x=1 hoặc x=-7/2
4: 3x^2-9x+6=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
5: x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
`@` `\text {Answer}`
`\downarrow`
`1)`
\(x^2 - 9x + 8?\)
\(x^2-9x+8=0\)
`<=>`\(x^2-8x-x+8=0\)
`<=> (x^2 - 8x) - (x - 8) = 0`
`<=> x(x - 8) - (x-8) = 0`
`<=> (x-1)(x-8) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 8}`
`2)`
\(3x^2 - 7x + 4 =0\)
`<=> 3x^2 - 3x - 4x + 4 = 0`
`<=> (3x^2 - 3x) - (4x - 4) = 0`
`<=> 3x(x - 1) - 4(x - 1) = 0`
`<=> (3x - 4)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {4/3; 1}`
`3)`
\(2x^2 + 5x - 7=0\)
`<=> 2x^2 - 2x + 7x - 7 = 0`
`<=> (2x^2 - 2x) + (7x - 7) = 0`
`<=> 2x(x - 1) + 7(x - 1) = 0`
`<=> (2x+7)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`
`4)`
\(3x^2 - 9x + 6 = 0\)
`<=> 3x^2 - 3x - 6x + 6 = 0`
`<=> (3x^2 - 3x) - (6x - 6) = 0`
`<=> 3x(x - 1) - 6(x - 1) = 0`
`<=> (3x - 6)(x - 1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-6=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=6\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 2}.`
`5)`
\(x^2 + 2x - 3=0\)
`<=> x^2 + 3x - x - 3 = 0`
`<=> (x^2 - x) + (3x - 3) = 0`
`<=> x(x - 1) + 3(x - 1) = 0`
`<=> (x+3)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; -3}.`
Tìm nghiệm của các đa thức sau.
f(x)=3x-6; h(x)=-5x+30; g(x)=(x-3).(16-4x); k(x)=x^2-8; m(x)=x^2+7x-8; n(x)=5x^2+9x+4
Đặt f(x)=0
nên 3x-6=0
hay x=2
Đặt h(x)=0
nên 30-5x=0
hay x=6
Đặt g(x)=0
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Ta có:
\(f\left(x\right)=0\Leftrightarrow3x-6=0\Leftrightarrow x=2\)
Vậy nghiệm của đa thức f(x) là 2
\(h\left(x\right)=0\Leftrightarrow-5x+30=0\Leftrightarrow x=6\)
Vậy nghiệm của đa thức h(x) là 6
Đặt \(f\left(x\right)=3x-6=0\Leftrightarrow x=2\)
Đặt \(h\left(x\right)=-5x+30=0\Leftrightarrow x=6\)
Đặt \(g\left(x\right)=\left(x-3\right)\left(16-4x\right)=0\Leftrightarrow x=3;x=4\)
Đặt \(k\left(x\right)=x^2-8=0\Leftrightarrow x^2=8\Leftrightarrow x=\pm2\sqrt{2}\)
Đặt \(m\left(x\right)=x^2+7x-8=0\Leftrightarrow\left(x-1\right)\left(x+8\right)=0\Leftrightarrow x=-8;x=1\)
Đặt \(n\left(x\right)=5x^2+9x+4=0\Leftrightarrow\left(5x+4\right)\left(x+1\right)=0\Leftrightarrow x=-\dfrac{4}{5};x=-1\)
Cho hai đa thức:
P(x)=2x^4+9x^2-3x+7-x-4x^2-2x^4
Q(x)=-5x^30-3x-3+7x-x^2-2
a)tìm giá trị của x sao cho Q(x)+P(x)+5x^2-2=0
ét o ét mn ơi em cần gấp
a: P(x)=5x^2-4x+7
Sửa đề: Q(x)=-5x^3-x^2+4x-5
Q(x)+P(x)+5x^2-2=0
=>5x^2-4x+7-5x^3-x^2+4x-5+5x^2-2=0
=>5x^3=0
=>x=0