Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ASOC
Xem chi tiết
nguyễn tùng sơn
Xem chi tiết
Nguyễn Hà Thảo My
Xem chi tiết
Hung nguyen
20 tháng 4 2017 lúc 16:42

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)\dfrac{9}{a+b+c}=9\)

Nguyễn Minh Tuấn
Xem chi tiết
QuocDat
15 tháng 1 2018 lúc 12:42

Ta có :

\(M>N:\hept{\begin{cases}M=a+b-1\\N=b+c-1\end{cases}}\)

M=(a+b)-1 ; N=(b+c)-1

=> a+b > b+c

<=> b=b => a>c

=> a-c > 0

Tạ Thị Dung
15 tháng 1 2018 lúc 12:21

M-N= a+b-1-(b-c-1)
     = a+b-1-b-c+1
     = a+(b-b)+(-1+1)-c
    = a-c
=> M>N; M-N=a-c=> a-c>0

Nguyễn Thị Uyển Nhi
Xem chi tiết
Học tốt
20 tháng 1 2018 lúc 5:56

Ta có:

1+\(\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)

Thay a=1

=>\(1+\dfrac{1}{b}=b+\dfrac{1}{c}=c+1\)

*Lấy \(1+\dfrac{1}{b}=c+1\Rightarrow\dfrac{1}{b}=c\Rightarrow b=\dfrac{1}{c}\)

=>\(1+\dfrac{1}{b}=\dfrac{2}{c}=c+1\)

*Lấy \(\dfrac{2}{c}=\dfrac{c+1}{1}\)

=> 2=c(c+1)

<=> 2=c2+c

=>c=-2

*Lấy \(1+\dfrac{1}{b}=\dfrac{2}{c}\)

Thay c=-2 và quy đồng

=>\(\dfrac{b+1}{b}=-1\)

=>b+1=-b

=> b+b=-1

=>2b=-1

=> b=-1/2

Vậy b=\(-\dfrac{1}{2};c=-2\)

Phan Ngọc Anh
Xem chi tiết
ngonhuminh
12 tháng 5 2018 lúc 17:17

A=[(a+b)/a][(b+c)/b][(c+a)/c]

a+b+c=0=>a+b=-c;b+c=-a;c+a=-b

A=-(abc)/(abc)=-1

Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2021 lúc 20:56

\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

\(\Rightarrow b+c=\left(b+c\right).1\ge4a\left(b+c\right)\left(b+c\right)=4a\left(b+c\right)^2\ge4a.4bc=16abc\) (đpcm)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a+b+c=1\\a=b+c\\b=c\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{4};\dfrac{1}{4}\right)\)

khanhhuyen6a5
Xem chi tiết
Nguyễn Quỳnh Trang
5 tháng 5 2018 lúc 22:49

\(1+\dfrac{4}{b}\) hay là \(1+\dfrac{a}{b}\) vậy bạn

Như Trần
Xem chi tiết
Y
9 tháng 5 2019 lúc 18:08

\(A=\left(a+\frac{1}{a}-2\right)+\left(b+\frac{1}{b}-2\right)+\left(c+\frac{1}{c}-2\right)-\left(a+b+c\right)+6\)

\(A=\frac{a^2-2a+1}{a}+\frac{b^2-2b+1}{b}+\frac{c^2-2c+1}{c}-3+6\)

\(A=\frac{\left(a-1\right)^2}{a}+\frac{\left(b-1\right)^2}{b}+\frac{\left(c-1\right)^2}{c}+3\) \(\ge3\forall a,b,c>0\)

A = 3 \(\Leftrightarrow a=b=c=1\)

Vậy min A = 3 \(\Leftrightarrow a=b=c=1\)

 Mashiro Shiina
9 tháng 5 2019 lúc 18:15

\(3A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\) (bđt AM-GM)

\(\Rightarrow3A\ge9\Leftrightarrow A\ge3\)

\("="\Leftrightarrow a=b=c=1\)