cho hàm số y=x2-5x+8 có đồ thị là (P) và hai điểm A(4,-1) , B(10,5) . biết điểm M(x0,y0) trên (P) thỏa mãn diện tích tam giác MAB nhỏ nhất . tính tổng x0 + y0
Cho hàm số y = (3m+1 ) x2 có đồ thị là (P) với m là tham số.
a) Tính giá trị của m để đồ thị (P) đi qua điểm E \(\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)
b) Tính giá trị của m để đồ thị (P) đi qua điểm F ( x0; y0) với (x0; y0) là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}3x-4y=2\\-4x+3y=-5\end{matrix}\right.\) . Vẽ đồ thị (P) thu được.
ĐKXĐ: \(m\ne-\dfrac{1}{3}\)
a) Để (P) đi qua điểm \(E\left(\dfrac{1}{2};\dfrac{1}{4}\right)\) thì
Thay \(x=\dfrac{1}{2}\)và \(y=\dfrac{1}{4}\) vào hàm số \(y=\left(3m+1\right)x^2\), ta được:
\(\left(3m+1\right)\cdot\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow3m+1=1\)
\(\Leftrightarrow3m=0\)
hay m=0(thỏa ĐK)
b) Ta có: \(\left\{{}\begin{matrix}3x-4y=2\\-4x+3y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x-16y=8\\-12x+9y=-15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=-7\\3x-4y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\3x=2+4y=2+4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy: F(2;1)
Để (P) đi qua điểm F(2;1) thì
Thay x=2 và y=1 vào hàm số \(y=\left(3m+1\right)x^2\), ta được:
\(\left(3m+1\right)\cdot4=1\)
\(\Leftrightarrow3m+1=\dfrac{1}{4}\)
\(\Leftrightarrow3m=-\dfrac{3}{4}\)
\(\Leftrightarrow m=\dfrac{-3}{4}:3=\dfrac{-3}{4}\cdot\dfrac{1}{3}=\dfrac{-1}{4}\)(thỏa ĐK)
Cho hàm số y = x - 1 2 x + 1 có đồ thị là (C). Gọi điểm M(x0; y0) với x0 > -1 là điểm thuộc (C) biết tiếp tuyến của (C) tại điểm M cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A; B và tam giác OAB có trọng tâm G nằm trên đường thẳng d: 4x+y=0. Hỏi giá trị của x0+2y0 bằng bao nhiêu?
A . -7/2
B. 7/2
C. 2
D.1
- Gọi với là điểm cần tìm.
- Gọi ∆ tiếp tuyến của (C) tại M ta có phương trình.
- Gọi
- Khi đó ∆ tạo với hai trục tọa độ tam giác OAB có trọng tâm là
- Do G thuộc đường thẳng 4x+y=0 nên
(vì A; B không trùng O nên )
- Vì x0>-1 nên chỉ chọn
Chọn A.
cho đồ thị hàm số y=ax đi qua điểm M(1;3)
a) xác định hệ số a
b) biết điểm B có toạ độ x0, y0 thuộc đồ thị hàm số y=ax. tính giá trị biểu thức P= \(\frac{x0+1}{y0+3}\)
a) \(\hept{\begin{cases}x=1\\y=3\end{cases}\Rightarrow3=a.1\Rightarrow a=3}\)
b) B(xo,yo) thuộc y=3x=> yo=3.xo
\(p=\frac{x_o+1}{3x_o+3}=\frac{x_o+1}{3\left(x_o+1\right)}\)
\(\hept{\begin{cases}x_0=-1\Rightarrow P=kXD\\x_o\ne-1\Rightarrow P=\frac{1}{3}\end{cases}}\)
Cho đồ thị hàm số y=ax đi qua điểm M(1;3)
a)Xác định hệ số a
b)Biết điểm B có toạ độ x0, y0 thuộc đồ thị hàm số y=ax. Tính giá trị biểu thức P=\(\frac{x0+1}{y0+3}\)
Cho hàm số y = 2 x - 1 x + 1 có đồ thị là ( C). Gọi I là giao điểm 2 đường tiệm cận. Gọi M x 0 ; y 0 , x 0 > 0 là một điểm trên (C) sao cho tiếp tuyến với (C) tại M cắt hai đường tiệm cận lần lượt tại A, B thỏa mãn A I 2 + I B 2 = 40 .Khi đó tích x 0 y 0 bằng.
A. 15 4
B. 1 2
C. 1
D. 2
Cho hàm số y = 2 x - 1 x + 1 có đồ thị là (C). Gọi I là giao điểm 2 đường tiệm cận. Gọi M x 0 , y 0 , x 0 > 0 là một điểm trên (C) sao cho tiếp tuyến với (C) tại M cắt hai đường tiệm cận lần lượt tại A, B thỏa mãn A B 2 + I B 2 = 40 . Khi đó tích x 0 y 0 bằng
A. 15 4
B. 1 2
C. 1
D. 2
Giao điểm của hai đường tiệm cận là I ( -1;2 )
y = 2 x - 1 x + 1 ⇒ y ' = 3 x + 1 2 ⇒ PTTT tại M x 0 , y 0 là
( d ) y = 3 x 0 + 1 2 x - x 0 + 2 x 0 - 1 x 0 + 1
Giao của (d) với TCD x = -1 là A - 1 ; 2 x 0 - 4 x 0 - 1 , Giao của (d) với TCD B 2 x 0 + 1 ; 2
A B 2 + I B 2 = 40 ⇔ 2 - 2 x 0 - 4 x 0 - 1 2 + - 2 x 0 - 2 2 = 40
⇔ 36 x 0 + 1 2 + 4 x 0 + 1 2 = 40
x 0 + 1 4 - 10 x 0 + 1 2 + 9 = 0 ⇔ x 0 + 1 2 = 1 x 0 + 1 2 = 9 ⇒ x 0 = 2 x 0 > 0 ⇒ y 0 = - 1 ⇒ x 0 y 0 = 2
Đáp án cần chọn là D