ĐỀ BÀI : Cho \(\Delta ABC,\widehat{B}=20,\widehat{C}=30,BC=6cm.Tính\)S ABCD
Cho ΔABC có\(\widehat{B}=20,\widehat{C}=30\) , BC=60mm.tính diện tích ΔABC
Kẻ đường cao BH ⊥ AC tại H
Tam giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{A}=180^o-20^o-30^o=130^o\)
Xét tam giác BHC vuông tại H có :
+) sin C = \(\frac{BH}{BC}\) <=> BH = \(BC.\sin30^o\) = 30 mm
+) cos C = \(\frac{CH}{BC}\) <=> CH = \(BC.\cos30^o\) = \(30\sqrt{3}\) mm
Vì \(\widehat{BAC}+\widehat{BAH}=180^o\)
mà \(\widehat{BAC}=130^o\)
=> \(\widehat{BAH}=50^o\)
Xét tam giác ABH vuông tại H có :
tan A = \(\frac{BH}{AH}\) <=> AH = \(30\div\tan50^o\) \(\approx\) 25 mm
=> AC = HC - AH = \(30\sqrt{3}\) - 25 \(\approx\) 27 mm
=> \(S_{ABC}=\) \(\frac{BH.AC}{2}\) = 405 \(mm^2\)
Cho \(\Delta ABC\) có \(\widehat{B}=30^0;\widehat{C}=20^0\).Trên cạnh BC lấy điểm của D sao cho BD=AC.Chứng minh rằng \(\Delta ADC\) cân tại D.
P/S:Một bài hình khá hay cho mọi người thưởng thức:)
Đặt AB = c; AC = b = BD; BC = a . Hạ AK \(\perp BC\)(chỗ này chả biết chứng minh K khác D kiểu gì@@)
Ta có: Trong tam giác vuông, cạnh đối diện với góc 30o bằng nửa cạnh huyền. Do đó:\(AK=\frac{AB}{2}=\frac{c}{2}\)
\(KD=BD-BK=b-BK=b-\sqrt{c^2-AK^2}=b-\frac{\sqrt{3}}{2}c\) (thay cái phía trên vào)
Mà KD > 0 do đó \(b>\frac{\sqrt{3}}{2}c\)
Từ đây: \(AD=\sqrt{AK^2+KD^2}=\sqrt{b^2+c^2-\sqrt{3}bc}\) (1) (Thay hết vào thôi:v)
Lại có: \(DC=KC-KD=\sqrt{AC^2-AK^2}-\left(b-\frac{\sqrt{3}}{2}c\right)\)
\(=\sqrt{b^2-\frac{c^2}{4}}-\left(b-\frac{\sqrt{3}}{2}c\right)\) (2)
Từ (1) và (2) ta cần chứng minh: \(\sqrt{b^2+c^2-\sqrt{3}bc}=\sqrt{b^2-\frac{c^2}{4}}-\left(b-\frac{\sqrt{3}}{2}c\right)\)
Nghĩ ra tới đây và thấy có gì đó sai sai, bác check giúp@@
Bài tập: Cho \(\Delta ABC\) có AB =20 cm, AC = 25 cm, BC = 30 cm. Đường phân giác trong của \(\widehat{A}\) cắt cạnh BC tại D. Qua B kẻ BH vuông góc với AD (\(H\in AD\)), qua C kẻ CK vuông góc với AD (\(K\in AD\)).
a) Chứng minh \(\Delta ABH\) đồng dạng với \(\Delta ACK\)
b) Chứng minh AH.KD = AK.HD
c) Tính BD và DC
d) Đường phân giác của \(\widehat{B}\) cắt AC tại E và đường phân giác của \(\widehat{C}\) cắt AB tại F. Chứng minh \(\dfrac{DB}{DC}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}=1\)
Giúp nk với ạ, please
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
\(\widehat{BAH}=\widehat{CAK}\)(AK là tia phân giác của \(\widehat{BAC}\))
Do đó: ΔABH\(\sim\)ΔACK(g-g)
c) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{20}=\dfrac{CD}{25}\)
mà BD+CD=BC=30cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{20}=\dfrac{CD}{25}=\dfrac{BD+CD}{20+25}=\dfrac{30}{45}=\dfrac{2}{3}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{20}=\dfrac{2}{3}\\\dfrac{CD}{25}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{40}{3}\left(cm\right)\\CD=\dfrac{50}{3}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BD=\dfrac{40}{3}cm;CD=\dfrac{50}{3}cm\)
Cho \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}=120^o;\widehat{A}-\widehat{B}=30^o\)
a) So sánh các cạnh của \(\Delta ABC\)
b) Tia phân giác của góc A cắt BD tại D. So sánh độ dài BD và CD
Cho ΔABC cân tại A có \(\widehat{A}=30^0\), BC = 2cm. Trên cạnh AC lấy S sao cho \(\widehat{CBD}=60^0\). Tính AD?
1, Cho \(\Delta ABC\) biết \(\widehat{A}\)=\(\widehat{B}\)=\(\widehat{C}\). Tính số đo của mỗi góc
2, Cho \(\Delta ABC\) biết \(\widehat{A}\)= 70 độ; \(\widehat{B}\)-\(\widehat{C}\)=10 độ. Tính \(\widehat{B}\); \(\widehat{C}\)
\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)
Cho \(\Delta ABC\)có \(\widehat{B}=30^o;\widehat{C}=105^o\)và D là trung điểm của BC. Tính số đo của \(\widehat{BAD}\).
1) Cho ΔABC cân tại A, các đường phân giác AD và BE. Biết \(AD=\dfrac{BE}{2}\).Tính các góc của ΔABC?
2) Cho ΔABC cân tại A, \(\widehat{B}=\widehat{C}=50^0\). Lấy điểm K nằm trong ΔABC sao cho \(\widehat{KBC}=10^0;\widehat{KCB}=30^0\).
a, CM: ΔABK cân.
b, Tính \(\widehat{BAK}\)?
3) Cho ΔABC có đường cao AH\(\left(AH\perp BC\right)\) và đường phân giác BD. Biết \(\widehat{AHD}=45^0\). Tính \(\widehat{ADB}?\)
Giải giúp mình nhé! Nhanh lên!!!!!!!!!!!!!!!!!!!!!!!!
Cho ΔABC có \(\widehat{B}\) - \(\widehat{C}\) = 30o. Tia phân giác của \(\widehat{A}\) cắt BC ở D. Tính số đo \(\widehat{ADB}\)
Xét \(\Delta ADB\), có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=180^o\)
\(\Rightarrow\widehat{ADB}=180^o-\dfrac{1}{2}\widehat{BAC}-\widehat{B}\)
\(=180^o-\dfrac{1}{2}\left(180^o-\widehat{B}-\widehat{C}\right)-\widehat{B}\)
\(=180^o-\dfrac{1}{2}\left(180^o-\widehat{B}-\widehat{B}+30^o\right)-\widehat{B}\)
\(=180^o-\dfrac{1}{2}\left(210^o-2\widehat{B}\right)-\widehat{B}\)
\(=180^o-105^o=75^o\)