Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Ngọc Nguyễn
Xem chi tiết
Nhâm Đắc Huy
22 tháng 10 2019 lúc 22:27

H B A C 30 60 mm 20

Kẻ đường cao BH ⊥ AC tại H

Tam giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

=> \(\widehat{A}=180^o-20^o-30^o=130^o\)

Xét tam giác BHC vuông tại H có :

+) sin C = \(\frac{BH}{BC}\) <=> BH = \(BC.\sin30^o\) = 30 mm

+) cos C = \(\frac{CH}{BC}\) <=> CH = \(BC.\cos30^o\) = \(30\sqrt{3}\) mm

\(\widehat{BAC}+\widehat{BAH}=180^o\)

\(\widehat{BAC}=130^o\)

=> \(\widehat{BAH}=50^o\)

Xét tam giác ABH vuông tại H có :

tan A = \(\frac{BH}{AH}\) <=> AH = \(30\div\tan50^o\) \(\approx\) 25 mm

=> AC = HC - AH = \(30\sqrt{3}\) - 25 \(\approx\) 27 mm

=> \(S_{ABC}=\) \(\frac{BH.AC}{2}\) = 405 \(mm^2\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
Xem chi tiết
tth_new
24 tháng 10 2019 lúc 16:20

B C A D K

Đặt AB = c; AC = b = BD; BC = a . Hạ AK \(\perp BC\)(chỗ này chả biết chứng minh K khác D kiểu gì@@)

Ta có: Trong tam giác vuông, cạnh đối diện với góc 30o bằng nửa cạnh huyền. Do đó:\(AK=\frac{AB}{2}=\frac{c}{2}\)

\(KD=BD-BK=b-BK=b-\sqrt{c^2-AK^2}=b-\frac{\sqrt{3}}{2}c\) (thay cái phía trên vào)

Mà KD > 0 do đó \(b>\frac{\sqrt{3}}{2}c\)

Từ đây: \(AD=\sqrt{AK^2+KD^2}=\sqrt{b^2+c^2-\sqrt{3}bc}\) (1) (Thay hết vào thôi:v)

Lại có: \(DC=KC-KD=\sqrt{AC^2-AK^2}-\left(b-\frac{\sqrt{3}}{2}c\right)\)

\(=\sqrt{b^2-\frac{c^2}{4}}-\left(b-\frac{\sqrt{3}}{2}c\right)\) (2) 

Từ (1) và (2) ta cần chứng minh: \(\sqrt{b^2+c^2-\sqrt{3}bc}=\sqrt{b^2-\frac{c^2}{4}}-\left(b-\frac{\sqrt{3}}{2}c\right)\)

Nghĩ ra tới đây và thấy có gì đó sai sai, bác check giúp@@

Khách vãng lai đã xóa
Takanashi Hikari
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 22:27

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có 

\(\widehat{BAH}=\widehat{CAK}\)(AK là tia phân giác của \(\widehat{BAC}\))

Do đó: ΔABH\(\sim\)ΔACK(g-g)

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 22:29

c) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{20}=\dfrac{CD}{25}\)

mà BD+CD=BC=30cm(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{20}=\dfrac{CD}{25}=\dfrac{BD+CD}{20+25}=\dfrac{30}{45}=\dfrac{2}{3}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{20}=\dfrac{2}{3}\\\dfrac{CD}{25}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{40}{3}\left(cm\right)\\CD=\dfrac{50}{3}\left(cm\right)\end{matrix}\right.\)

Vậy: \(BD=\dfrac{40}{3}cm;CD=\dfrac{50}{3}cm\)

Matsumi
Xem chi tiết
George H. Dalton
Xem chi tiết
thuytrung
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 15:57

\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)

Như Ý Nguyễn Lê
Xem chi tiết
* L~O~V~E * S~N~O~W *
Xem chi tiết
Phạm Trí Tâm
Xem chi tiết
Nguyen
20 tháng 2 2019 lúc 22:02

Xét \(\Delta ADB\), có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=180^o\)

\(\Rightarrow\widehat{ADB}=180^o-\dfrac{1}{2}\widehat{BAC}-\widehat{B}\)

\(=180^o-\dfrac{1}{2}\left(180^o-\widehat{B}-\widehat{C}\right)-\widehat{B}\)

\(=180^o-\dfrac{1}{2}\left(180^o-\widehat{B}-\widehat{B}+30^o\right)-\widehat{B}\)

\(=180^o-\dfrac{1}{2}\left(210^o-2\widehat{B}\right)-\widehat{B}\)

\(=180^o-105^o=75^o\)