Tìm điều kiện xác định của các biểu thức sau:
a) \(\sqrt{\frac{1}{2x^2}}\)
b) \(\sqrt{\frac{3x+2}{\left(x-1\right)^2}}\)
cho biểu thức\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{3x}{x-1}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a)Tìm điều kiện xác định của A
b)Rút gon A
c) Tìm các giá trị nguyên của x để A có giá trị nguyên
Tìm điều kiện xác định của mỗi biểu thức sau
Câu 1.A = \(\sqrt{2-3x}\)
Câu 2.B = \(\sqrt{-3x^2}\)
Câu 3.C = \(\sqrt{-2023x^3}\)
Câu 4.D = \(\sqrt{-2\left(x-5\right)}\)
Câu 5.E = \(\sqrt{\dfrac{-5}{2-2x}}\)
Câu 6.A = \(\sqrt{\left(x^2+1\right).\left(3-2x\right)}\)
Câu 7.B = \(\sqrt{\left(-x^2-1\right).\left(3-x\right)}\)
Câu 8.C = \(\sqrt{x-1}\)+\(\sqrt{2-2x}\)
Câu 9.D = \(\sqrt{x^2-1}\)-\(\sqrt{4-4x^2}\)
Câu 10.E = \(\sqrt{x-1}.\sqrt{3-x}\)
Giúp mình với!Mình đang cần gấp
1: ĐKXĐ: 2-3x>=0
=>x<=2/3
2: ĐKXĐ: -3x^2>=0
=>x^2<=0
=>x=0
3: ĐKXĐ: -2023x^3>=0
=>x^3<=0
=>x<=0
4: ĐKXĐ: -2(x-5)>=0
=>x-5<=0
=>x<=5
5: ĐKXĐ: -5/2-2x>=0
=>2-2x<0
=>2x>2
=>x>1
6: ĐKXĐ: (x^2+1)(3-2x)>=0
=>3-2x>=0
=>-2x>=-3
=>x<=3/2
7: ĐKXĐ: (-x^2-1)(3-x)>=0
=>(x^2+1)(x-3)>=0
=>x-3>=0
=>x>=3
Tìm điều kiện xác định và rút gọn biểu thức sau: P = \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Điều kiện: \(\hept{\begin{cases}a>0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}\)
Ta có:
\(1P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)\)
\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)
Câu 1 : Tính giá trị của biểu thức với điều kiện cho trước
cho biểu thức :
A= \(\left(\frac{1}{2\sqrt{x}-3}-\frac{3}{2\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}\right):\left(\frac{16\sqrt{x}-21}{2x+\sqrt{x}-3}\right)\)
a , tính điều kiện để a được xác định
b, rút gọn A
c, Tìm giá trị của x để A có giá trị âm
Giúp mình câu này với
Cho biểu thức: Q= \([\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right).\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}]\)
a, Tìm điều kiện xác định của biểu thức
b, Rút gọn Q
c, Chứng minh rằng với các giá trị của x thỏa mãn điều kiện xác định thì -5 <= Q <= 0
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
\(\left(\frac{\sqrt{x}-2}{2\sqrt{x}-2}+\frac{3}{2\sqrt{x}+2}-\frac{\sqrt{x}+3}{2\sqrt{x}+2}\right):\left(1-\frac{\sqrt{x}-3}{x-1}\right)\)
a . Tìm điều kiện xác định
b. Rút gọn biểu thức
Tìm điều kiện xác định của biểu thức sau:
\(a,\sqrt{3x+1}\)
\(b,\sqrt{\left(x+2\right)\left(2x-3\right)}\)
a) \(\text{ĐKXĐ:}3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)
b) \(\text{ĐKXĐ:}\left(x+2\right)\left(2x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge\frac{3}{2}\end{cases}}\)
Đúng không ta?:3
Cho biểu thức : B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x-1}}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm điều kiện xác định và rút gọn biểu thức B
b) So sánh B với 2
c) Tìm GTLN của A = B - \(9\sqrt{x}\)
xin lỗi bạn nhé mik lớp 7
Tìm điều kiện xác định và giải các phương trình sau
a) \(\frac{3}{x-5}.\frac{\sqrt{\left(5-x\right)^2.\left(x-1\right)}}{\sqrt{\left(x-1\right)^2}}-\frac{1}{x+1}\)
b) \(\sqrt{\frac{1+x}{2x}}:\sqrt{\frac{\left(x+1\right)^3}{8x}}-\sqrt{x^2-4x+4}=0\)
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a)Tìm điều kiện xác định, rút gọn biểu thức
b)Tìm giá trị nhỏ nhất P
c)Tìm x để biểu thức Q=\(\frac{2\sqrt{x}}{P}\)nhận giá trị nguyên